SPENCER FOLK

spencer.folk@gmail.com spencerfolk.github.io

EDUCATION

2019-present	t University of Pennsylva Advisors: Dr. Vijay Kum	nia, Ph.D. Candidate, Mechanical Engineering ar, <u>Dr. Mark Yim</u>	Philadelphia, PA
2019-2022	University of Pennsylva	University of Pennsylvania, M.S., Robotics	
2015-2019		Lafayette College, B.S., Mechanical Engineering Graduated Summa Cum Laude	
SKILLS			
Programming and Development Design and Fabrication Simulation and Analysis Communication		Python, C++, Git, ROS, Docker, MATLAB, M SOLIDWORKS, Laser Cutting, 3D Printing, S ANSYS Fluent, ANSYS Mechanical LaTeX, Microsoft Office, Adobe Premiere Pro	Soldering

RESEARCH EXPERIENCE

2022-present	 Wind Estimation and Planning for Urban Air Mobility Ames Research Center, National Aeronautics and Space Administration (NAS) Developing fast computational fluid dynamics code to rapidly generate law simulated urban winds to enable real-time wind field prediction using dee Synthesizing receding horizon optimal control schemes that leverage loca predictions from deep neural networks to reduce energy consumption and upwards of 30% for UAVs operating in windy urban environments. Performing analyses and experiments in support of NASA missions for sa sustainable aviation in urban environments. 	rge datasets of p learning. l wind field crash rates by
2019-present	 Graduate Research on Aerial Robotics GRASP Lab, University of Pennsylvania Investigating state-of-the-art methods in deep learning, state estimation, at planning to enhance situational awareness of multirotor UAVs in cluttered environments to fly safer and more efficiently. Tooling classical filtering methods for online system identification of UA and actuator dynamics, enabling adaptive control schemes and fault detect Building and maintaining a popular aerial robotics simulator, <i>RotorPy</i>, propoint for learning motion planning, state estimation, and control algorithm Frequently managing teams of undergraduate and graduate students support 	d windy V aerodynamics tion. oviding an entry as for aerial robots.
2019	 Undergraduate Research on Ethorobotics Department of Mechanical Engineering, Lafayette College Modeled the movement of Archerfish in schooling and hunting sequences Decision Processes and stochastic differential equations. Replicated fish swimming on a 5-DoF robotic fish to successfully elicit sp behaviors among Archerfish, culminating in a journal paper in <i>Biological</i> 	pecific social

2017-2019 Design and Fabrication of 3D-Printed UAVs

United States Army Research Laboratory

- Designed, manufactured, and assembled size-scalable 3D-printed quadrotor UAVs that reduced part and fastener count by 58%, satisfying Army requirements for a missionspecific UAV available on demand within 24 hours of request.
- Developed a routine using textbook rotorcraft mechanics that appropriately sized and outfitted a quadrotor to optimize for mission parameters like range, endurance, loiter time, and payload capacity.
- Applied deep learning to identify max endurance and max range flight speeds for 3D-printed UAVs based on flight data, enabling efficient flight for aircraft accounting for often unmodeled effects like profile drag, rotor-rotor interference, and rotor-frame interference.

LEADERSHIP AND MENTORING

2020-present	Virtual High School Mentoring	
	Polygence	
	 Fostering curiosity and interest in STEM among high school students by guiding them through self-motivated projects, which have included designing a gimbaled rocket, solar- powered UAV, and an aerial landmine detection system. 	
2020-2022	Teaching Assistantships	
	University of Pennsylvania	
	- Graduate courses: Advanced Robotics (600 level).	
	 Undergraduate courses: Control for Autonomous Robots (400 level), Vibrations (300 level), Statics and Strengths of Materials (200 level). 	
2021	Vice President, Mechanical Engineering Graduate Association	
	University of Pennsylvania	
	 Upheld a sense of community through the COVID-19 pandemic by organizing virtual events ranging from Zoom trivia nights to wellness challenges. 	
2018-2019	Chapter President, Tau Beta Pi (PA-E)	
	Lafayette College	
	 Organized chapter and community events, communicated with headquarters to maintain national standards, and represented the chapter at national and district conferences. 	
PUBLICATIO	DNS	

Folk, S., Melton, J., Margolis, B. W. L., Yim, M., & Kumar, V. (2025). Towards Safe and Energy-Efficient Real-Time Motion Planning in Windy Urban Environments. *International Conference on Robotics and Automation (ICRA)* 2025. [Conference]

Folk, S., Melton, J., Margolis, B. W. L., Yim, M., & Kumar, V. (2024). Learning Local Urban Wind Flow Fields from Range Sensing. *IEEE Robotics and Automation Letters*. [Journal]

Sanghvi, H., Folk, S., & Taylor, C. J. (2024). OCCAM: Online Continuous Controller Adaptation with Meta-Learned Models. *Conference on Robot Learning (CoRL)*. [Conference]

Zhang, H., Srikanthan, A., **Folk, S.**, Kumar, V., & Matni, N. (2024). Why change your controller when you can change your planner: Drag-aware trajectory generation for quadrotor systems. *arXiv preprint arXiv:2401.04960*. [Preprint]

Weakly, J., Li, X., Agarwal, T., Li, M., Folk, S., Jiang, C., & Sung, C. (2024). Bistable Aerial Transformer: A Quadrotor Fixed-Wing Hybrid That Morphs Dynamically Via Passive Soft Mechanism. *Journal of Mechanisms and Robotics*, 16(7), 071016. [Journal]

Folk, S., Paulos, J., & Kumar, V. (2023). RotorPy: A Python-based Multirotor Simulator with Aerodynamics for Education and Research. *The Role of Robotic Simulators for Unmanned Aerial Vehicles – ICRA 2023*. [Conference Workshop]

Brown, A. A., Brown, M. F., **Folk, S. R.**, & Utter, B. A. (2021). Archerfish respond to a hunting robotic conspecific. *Biological Cybernetics*, 115(6), 585-598. [Journal]

INVITED TALKS

"Towards Safe and Efficient Real-Time Motion Planning in Windy Urban Environments"			
East Coast Meetup, Dronecode Foundation, Philadelphia, PA.	March 2025		
MEAM Departmental Seminar Series, University of Pennsylvania, Philadelphia, PA.	February 2025		
Nikolai Matni Group, University of Pennsylvania, Philadelphia, PA.	October 2024		
"Learning-Based Methods for Real-Time Wind Prediction in Urban Environments" Intelligent Robot Motion Lab x FAST Group, Princeton University, Princeton, NJ.	May 2024		

HONORS AND AWARDS

2019	Graduate Assistance in Areas of National Need (GAANN) Fellowship University of Pennsylvania Awarded to "graduate students of superior ability planning to pursue the highest degree in their course of study."
2019	Karl J. Ammerman Prize <i>Lafayette College</i> Awarded to the "most deserving student in the mechanical engineering department, as selected by the faculty of the department."