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ABSTRACT. In this work, we develop a computationally light estimator for a quadrotor with unknown and possibly distinct
propeller aerodynamics using measurements from an onboard gyroscope. An Extended Kalman Filter is used to estimate
several model parameters related to the aerodynamics of each individual propeller. Better estimation of the actuator dynamics
can lead to improved trajectory tracking, and relaxing the assumption that these parameters are known and constant is especially
useful in cases where a quadrotor is cobbled together from a variety of recycled motors and propellers, or if a motor or propeller
becomes damaged during an operation. In this paper, we show that these parameters are observable and present simulated
experiments using a modified version of the MEAM 620 quadcopter simulator. In simulation, the filter rapidly converges to
accurate parameter values, and in some cases greatly improves tracking performance. In the future, we will further investigate
the impact of filtering-based estimators on system stability when used online in the control loop. Additionally, experiments
will be carried out to demonstrate the effectiveness of the estimator on real hardware.

1. INTRODUCTION

Small unmanned aerial vehicles (sUAVs), referred to informally as drones, have continued to gain popularity among
both enterprise and consumer populations, in large part due to continued reductions in cost and improvements in sensing,
actuation, and battery technologies. Besides being a popular research platform for robotic design, low level control, and
motion planning [1], drones have demonstrated their value in a wide variety of tasks ranging from entertaining stadium
light shows [2] and precision agriculture [3] to providing critical surveillance and intelligence information in modern
conflicts [4].

Despite the diversity of morphologies that drones exhibit, the vast majority of drones today are all actuated in a
similar manner: small Direct Current electric motors drive air propellers at variable rates that, when orchestrated by a
control system, produce a desired net thrust and torque on the body. Inherent in this method of actuation is a required
knowledge of the mechanics describing propeller force and torque generation, since without a proper model of the
actuator dynamics a control system would never produce a desired wrench on the robot. To this end, rather than using
unwieldy expressions found in rotorcraft literature [5], roboticists have historically used simplifying assumptions, like
near-hover operating conditions with no wind and an identical set of undamaged propellers, to reduce the actuator
dynamics down to quadratic models that relate a propeller’s thrust and torque to the square of its rotation rate with two
fitting parameters [6]. These parameters, frequently referred to as the thrust and drag coefficients, are fitted once for
a given propeller using static thrust stand tests. It is at this point where most roboticists will stop thinking about the
actuator dynamics of a drone.

For applications that don’t have high trajectory tracking performance standards or otherwise operate in ideal
conditions, the simplified quadratic models for thrust and torque are–and have historically been–sufficient. However, as
drones take on more autonomy in more constrained [7] and chaotic [8] arenas, accurate actuator models play a pivotal
role in mission success. Decades worth of research in rotorcraft has yielded plenty of more accurate propeller models
of varying fidelity, from lower fidelity models like Blade Element Momentum Theory (BEMT) [5] to full-fledged
numerical solutions to the Navier-Stokes equation [9]. Unlike the roboticists’ two-parameter models, these methods
can model the effects from high winds (or equivalently high speed flight), rotor-rotor interaction, and rotor-surface
interaction. The trade-off for these more expressive models is of course that they become too complex and cumbersome
for applications in control or motion planning. Further, one glaring issue is that even more complex models still assume
a fixed blade geometry, which may not be the case for a propeller subject to low manufacturing tolerances, degraded
from prior use, or even damaged mid-flight. For high performance applications that require low tracking errors,
drones require expressive and adaptive models of their actuator dynamics that are amenable to traditional
methods for control and motion planning.

1.1. Contributions. The primary contribution of this project is a computationally tractable Extended Kalman Filter
that estimates individual propeller thrust and drag coefficients using only measurements from an on-board gyroscope.
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FIGURE 1. A standard “plus“ configuration quadcopter with arm length L.

Our proposed solution to the need for expressive yet lightweight actuator dynamic models preserves the controller- and
planning-friendly quadratic models for propeller thrust and torque but enhances the models by implicitly relaxing the
assumption that the thrust and drag coefficients are constant and indistinct from one propeller to the next. And unlike
related works, our filter can likely run on even highly constrained processors and converges to accurate estimates of
propeller coefficients within 200 samples, potentially making it feasible for a controller to use these estimates in the
loop for small agile quadcopters.

2. RELATED WORK

When concerning system identification of the actuator dynamics for a multi-rotor vehicle, the standard approach is
to secure a motor and propeller to a thrust stand and perform a series of static tests1. This requires very little domain
knowledge to carry out, but the trade-off is that the fitted parameters are only accurate for the specific propeller and
wind conditions tested. Gill et al. [10] took a brute force approach and collected data over 19 propellers subject to
various wind conditions using a wind tunnel. The result was a lumped parameter model with coefficients for each
propeller that are functions of relative airflow. Another brute force approach is found in Ahmad et al. [9], where the
thrust and drag coefficients are computed using Computational Fluid Dynamics (CFD). Both approaches highlight
the laborious nature of system identification if one wants to capture all the different flow conditions a propeller may
experience.

Thanks to increasing compute resources, model-based online parameter identification of UAV actuator dynamics has
become a very active field of research. Munguia et al. [11] use an Extended Kalman Filter to successfully identify a
single thrust coefficient for all actuators on a quadcopter both in simulation and hardware using IMU measurements.
Works from Svacha et al. [12],[13] identify both a motor torque coefficient and thrust coefficient based on IMU data
using an Unscented Kalman Filter, but similarly these values are assumed to be the same among all four propellers
and are not compared against any ground truth measures. Recently Böhm et al. [14] presented a Bayesian filter
that recursively estimates not only navigation states, sensor biases, and inertial parameters, but also thrust and drag
coefficients for individual propellers. Results from [14] are done in simulation and the filter requires both IMU and
position measurements. This paper most resembles the anticipated contributions of our work and was only discovered
after most of the project was completed. Importantly, all of the above papers incorporate a nonlinear observability
analysis to varying extents to ensure filter convergence.

3. BACKGROUND

This problem considers the standard quadcopter with four propellers equidistant from the center of mass by length L,
as seen in Figure 1. The body frame B is aligned with the principal axes of the quadcopter ensuring that the inertia
tensor is diagonal with elements {Jxx, Jyy, Jzz}.

Each propeller produces a thrust, Ti, and moment, Mi, which are modeled as

Ti = k
(i)
f η2i Mi = k(i)m η2i (1)

1https://kumar-robotics-github-documentation.readthedocs.io/en/master/references/hardware/thrust_
stand/thrust_stand.html

https://kumar-robotics-github-documentation.readthedocs.io/en/master/references/hardware/thrust_stand/thrust_stand.html
https://kumar-robotics-github-documentation.readthedocs.io/en/master/references/hardware/thrust_stand/thrust_stand.html
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This model is a slight but meaningful modification to convention, in that we assume that each propeller has a unique
thrust (kf ) and drag (km) coefficient and there is no requirement that these parameters are constant in time.

4. APPROACH

Our approach uses a compact model representation informed by a nonlinear observability analysis (Section 4.1) to
estimate distinct thrust and drag coefficients using an Extended Kalman Filter. The process and measurement models are
derived in Section 4.2, and the filter is evaluated in a simulation environment described in Section 4.3 using trajectories
found in Section 4.4.

4.1. Observability Analysis and Variable Selection. We used a nonlinear observability analysis to determine which
state variables and measurements are required to estimate the aerodynamic coefficients [15]. This technique is described
in detail and applied to IMU estimation in prior work, see [12] and [14] for a more detailed description. The analysis
requires that the process model is written in control affine form, ẋ = f0 +

∑4
i=1 fi(x)u

(i). Lie derivatives of the
measurement model h with respect to the dynamics are concatenated into an observability matrix defined in Equation 2.

O = [(∇h)⊤, (∇Lf0
h)⊤, (∇Lf1

h)⊤, (∇Lf2
h)⊤, (∇Lf3

h)⊤, (∇Lf4
h)⊤]⊤ (2)

If rank(O) = n where n = dim(x) then the system is considered locally weakly observable. In other words, there
exists a trajectory such that each state x(i) is uniquely distinguishable from all other states x(j), j ̸= i

The observability matrix O was computed with Mathematica [16] using a modified version of a notebook made
available by Svacha et al. 2 We tested several different combinations of states (position, orientation, velocity,
aerodynamic coefficients, inertial parameters, IMU biases) and measurements (gyroscope, accelerometer) in order to
find the most compact state representation such that k(i)f and k(i)m were observable. We found that a simple system
composed of only the body angular rates, aerodynamic coefficients, and gyro measurements was observable. This
analysis was insufficient to show that inertial parameters could also be estimated, so in this work we assume the inertial
parameters are known.

4.2. Modeling. The state and control spaces are shown in Equation 3:

x =
[
ω⊤

B , k⊤
f , k⊤

m, b⊤g
]⊤ ∈ R14, u =

[
η21 , η22 , η23 , η24

]⊤
(3)

where ωB ∈ R3 is the quadrotor angular velocity in the body frame, kf ∈ R4 are the motor-propeller thrust
coefficients, km ∈ R4 are the motor-propeller moment coefficients, and bg ∈ R3 are the gyro biases. The control space
u is the vector of squared motor speeds, where ηi is the ith motor speed. Most electronic speed controllers (ESCs) used
on quadcopters can provide the current motor speed, so it is reasonable to assume we have access to the true motor
speed.

4.2.1. Process Model. The process model primarily consists of the body rate dynamics written in the quadcopter’s
body coordinate frame:

ω̇x =
1

Jxx

[
L(k

(2)
f u(2) − k

(4)
f u(4))− (Jzz − Jyy)ωyωz

]
(4)

ω̇y =
1

Jyy

[
L(k

(1)
f u(1) − k

(3)
f u(3)) + (Jzz − Jxx)ωxωz

]
(5)

ω̇z =
1

Jzz

[
k(1)m u(1) − k(2)m u(2) + k(3)m u(3) − k(4)m u(4) − (Jyy − Jxx)ωxωy

]
(6)

where J(··) indicates the moment of inertia about the respective body axes and L is the distance between each propeller
and the center of mass. The aerodynamic coefficients and gyroscope biases are difficult to model explicitly. Rather than
attempting to capture these complexities, the process model assumes these states are constant.

k̇f = 0 k̇m = 0 ḃg = 0 (7)

By concatenating Equations 4-7 we arrive at a process model in the form ẋ = f(x,u). For the filter, these dynamics
are discretized using Forward Euler and a timestep of dt = 0.002 seconds.

2https://github.com/jsvacha/observability_analysis

https://github.com/jsvacha/observability_analysis
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(A) Thrust Coefficients kf (B) Moment Coefficients km (C) Gyro Biases bg

FIGURE 2. Example filter estimates during the first 2.5 seconds of the Lissajous trajectory. The
shaded region shows one standard deviation of the estimated distribution.

4.2.2. Measurement Model. The nonlinear observability analysis provided the conclusion that only measurements from
the gyroscope were necessary for the system {x,u} to be observable. Thus, the measurement model is simple.

y = ωB + bg (8)

Conveniently, the measurement model is already linear in the state, and so the measurement model can be written in the
form y = h(x) = Cx.

4.3. Simulation Environment. Simulations were done using a modified version of the MEAM 620 Simulator. The
simulator came with a basic model of a quadcopter and a nonlinear geometric position controller [17]. We modified
the simulator to specify individual propeller parameters for each of the four actuators, and we added simulated IMU
measurements with specified bias and noise parameters. Most importantly, we added the capability for a filter that
receives measurements from the IMU. A flag can be set to switch the controller feedback from ground truth values or
estimates from the filter. The simulator, filter, and controller loops are fixed at a rate of 500 Hz.

4.4. Trajectory Design. We tested the filter and controller on several trajectories of varying motion complexity. This
is because it is important that the filter visits a variety of different states to avoid conditions that are unobservable,
particularly around hover. Ideally, the trajectory should excite all axes of the gyroscope, especially yaw (zB). The
simplest trajectory tested is a step input whereby the quadcopter is commanded to translate in only the x-axis. The
quadcopter does not yaw in this trajectory. Another simple but effective trajectory is a circle path with a back-and-forth
desired yaw.

Consistent with [13] and [14], we also implemented a reparameterized compound Lissajous trajectory.
xW(t)
yW(t)
zW(t)
ψ(t)

 =


Ax(1− cos(2πnxt/T ))
Ay sin(2πnyt/T )
Az sin(2πnzt/T )
Aψ sin(2πnψt/T )

 (9)

Each flat output is specified using trigonometric functions with different amplitudes A(·) and frequencies using the
number of cycles n(·) in the full trajectory period T . To obtain variety in the signals produced by the gyroscope, we
superimpose a large amplitude, low frequency Lissajous curve with a small amplitude, high frequency Lissajous curve
to form the compound Lissajous trajectory. Each of the three trajectories is evaluated for 10 seconds.

5. EXPERIMENTAL RESULTS

The results show that the filter rapidly converges to the correct values with proper tuning. Figure 2 shows the first
few seconds of the filter performance in one of the test cases. The moment coefficients are often recovered in a fraction
of a second, while gyro biases are recovered after a few seconds. Detailed results are shown in Table 1.

The results cover the combination of the three trajectories (Lissajous, circle, and step) and three controller settings.
The Oracle controller is given perfect knowledge of the position, orientation, velocity, and the propeller coefficients,
providing a baseline measure of performance. The Incorrect controller is given incorrect coefficient estimates that are
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Tracking Error Convergence Time
x (m) y (m) z (m) yaw (º) kf & km (s) bg (s) % stable

Lissajous
Oracle 0.064 0.063 0.005 1.535 0.278 1.955 100

Incorrect 0.158 0.161 0.076 11.569 0.180 1.968 90
Filter 0.064 0.062 0.012 12.020 0.288 2.038 80

Circle
Oracle 0.047 0.045 0.001 0.600 0.083 3.057 100

Incorrect 0.215 0.152 0.075 17.383 0.223 2.611 100
Filter 0.056 0.054 0.013 28.442 0.172 2.426 100

Step
Oracle 0.230 0.000 0.001 0.000 0.019 9.539 100

Incorrect 0.325 0.121 0.067 16.168 0.044 9.395 100
Filter 0.308 0.088 0.159 26.371 0.051 8.232 100

TABLE 1. Simulation results. The table entries are the average values over 10 trajectories with
randomly selected constant parameters and initial belief. Trajectories where the control became
unstable were omitted from the average. Tracking error is root-mean-square-error (RMSE).

sampled from a Gaussian distribution around the true values. The Filter controller starts at the same incorrect values,
but updates those values online using the filter estimates at a rate of 500 Hz.

In all nine cases, we simulate 10 flights with randomly sampled true values of the propeller coefficients and gyro
biases. In each case, we evaluate the tracking error as well as the filter convergence time. We define the filter convergence
time as the point at which all future estimates are within 0.1 standard deviation of the true value. This is split into the
time for all propeller coefficients to converge and the time for all gyro biases to converge.

From the table, we can see that the convergence time for the propeller coefficients is fast regardless of the trajectory,
within 200 observations from the IMU. The gyro biases often fail to converge during the step trajectory, because this
trajectory does not excite yaw. It is also clear that tracking performance is negatively impacted by having the incorrect
coefficients; Incorrect is significantly worse than Oracle. For the majority of cases, Filter almost completely recovers
the XYZ-tracking performance. However, the yaw tracking is not improved when the controller uses the filter estimate.

6. DISCUSSION

In this report, we present an Extended Kalman Filter that estimates distinct thrust and drag coefficients for each
propeller on a quadcopter. The filter is lightweight; there are only 14 filter states and only gyroscope measurements are
necessary. This means this estimation scheme could likely run at a high frequency on most computationally-constrained
platforms, which likely cannot be said for the highly related work by Böhm et al. [14] that has 68 filter states.

The results show that the filter is able to converge to within 0.1 standard deviations of the true propeller coefficients
within 200 samples which is comparable to if not better than related works [13, 14]. Our filter’s sample efficiency–in
part due to proper tuning but also due to its simple design–revealed a question regarding how a controller might perform
when operating under the filter’s belief on the actuator dynamics. Our results suggest that for sufficiently exciting
trajectories it is possible to nearly recover the average tracking performance of a controller that has perfect knowledge of
the propeller coefficients. This conclusion could pave the way towards UAVs that can adapt to changing wind conditions
or even mid-flight propeller failure without necessitating the design and validation of new control laws. The coupling
between a nonlinear observer such as our EKF and a nonlinear controller remains to be carefully studied in this context.

One glaring result is the yaw tracking performance, which suffers greatly even with small inaccuracies in propeller
drag coefficients. Using the filter’s estimate did not seem to lower average yaw tracking error; in fact, it seemed to make
yaw tracking performance worse in all three trajectories evaluated. One possible explanation is that the controller’s
yaw-axis gains require better tuning but this seems unlikely because the Oracle controller has excellent yaw tracking.
Another more likely explanation reveals a hurdle with trying to combine nonlinear observers and controllers. The
dynamics of our EKF are difficult to predict, and wide variations in the filter estimate of k(i)f and k(i)m could lead to very
poor transient controller performance that is never fully recovered by the end of the trajectory.

In the future, we hope to investigate the stability of the controller and observer in the case where the actuator
dynamics are unknown. We are also interested in validating the computational feasibility of our lightweight observer
compared to other works on constrained hardware.
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