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Abstract

Small unmanned aerial vehicles (UAVs) have become standard tools in reconnaissance and sur-
veying for both civilian and defense applications. In the future, UAVs will likely play a pivotal
role in autonomous package delivery, but current multi-rotor candidates suffer from poor energy
efficiency leading to insufficient endurance and range. In order to reduce the power demands
of package delivery UAVs while still maintaining necessary hovering capabilities, companies like
Amazon are experimenting with hybrid Vertical Take-Off and Landing (VTOL) platforms. Tail-
sitter VTOLs offer a mechanically simple and cost-effective solution compared to other hybrid
VTOL configurations, and while advances in hardware and microelectronics have optimized the
tailsitter for package delivery, the software behind its operation has largely remained a criti-
cal barrier to industry adoption. Tailsitters currently lack a generic, computationally efficient
method of control that can provide strong safety and robustness guarantees over the entire flight
domain. Further, tailsitters lack a closed-form method of designing dynamically feasible transi-
tion maneuvers between hover and cruise. In this paper, we survey the modeling and control
methods currently implemented on small-scale tailsitter UAVs, and attempt to leverage a non-
linear dynamic model to design physically realizable, continuous-pitch transition maneuvers at
constant altitude. Primary results from this paper isolate potential barriers to constant-altitude
transition, and a novel approach to bypassing these barriers is proposed. While initial results are
unsuccessful at providing feasible transition, this work acts as a stepping stone for future efforts
to design new transition maneuvers that are safe, robust, and computationally efficient.

Contents

1 Introduction 2

2 Methods and Theory 4
2.1 Vehicle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Tailsitter Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Reference frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Point-mass dynamic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Underlying assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Passive Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 The Nonlinear Geometric Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Trajectory Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6.1 Constant acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6.2 Prescribed angle of attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Results and Discussion 12
3.1 Trim Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Transition 1: Constant Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Transition 2: Prescribed Angle of Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Conclusions and Future Work 15

Appendices 18

A Controller Step Responses 18

B Data Sets 19

C Simulation Environment 21

1



1 Introduction

In the last decade, small unmanned aerial vehicles (UAVs) have been the subject of increased intellectual explo-
ration in academic, industry, and defense settings. Applications for UAVs to date have ranged from Intelligence,
Surveillance, and Reconnaissance (ISR) to civilian applications like bridge inspection, agriculture, and geological
surveying. UAVs have even been employed to track and enforce social distancing of Italian citizens during the
recent SARS-CoV-2 pandemic [1]. The future is bright for UAVs–stakeholders anticipate that small UAVs will
soon be performing more difficult, transformative tasks such as autonomous delivery in large scale operations. As a
token of the technology’s potential, Amazon recently revealed a concept UAV with plans to launch a drone delivery
service in suburban areas across the United States [2].

However, recent studies have exposed significant energy inefficiencies of traditional multi-rotor UAVs when
operating at a large scale like in package delivery [3]. In light of this, autonomous package delivery companies
are experimenting with hybrid Vertical Take-Off and Landing (VTOL) aircraft, which ideally possess the hovering
capabilities of a rotorcraft but the range and endurance comparable to fixed-wing airplanes. Hovering capabilities
are important: they can potentially mitigate operational costs and logistical challenges by eliminating launch-and-
recover infrastructure, such as the slingshots used by current life-saving drone delivery service, Zipline [4]. Tailsitters
are a variant of hybrid VTOLs that have reduced mechanical complexity compared to other UAV configurations
(e.g. tilt-rotor or tilt-wing); unfortunately, there are many challenges hindering implementation of tailsitters for
package delivery. Primarily, reduced mechanical complexity has meant relying on sophisticated controllers that
can stabilize this underactuated system across all possible operating conditions. The design and evaluation of
controllers for general tailsitters across all size scales remains a significant gap in the literature surrounding these
aircraft.

Figure 1: A brief selection of tailsitter aircraft showcasing the state of the art in hybrid UAV design over the years; (a)
Lockheed XVF Pogo (1954); (b) Stone et. al (2008, [5]); (c) Phillips et. al. (2017, [6]); (d) Gu et. al (2019, [7]).

The first flying tailsitters were born out of Cold War era research and development of exotic aircraft. The
definitive example of an operational tailsitter aircraft is the Lockheed XVF Pogo dating back to 1954. The
Pogo was manual–take-off and landing required a skilled pilot–and only had 32 test flights before the project was
shelved in 1955. Research on tailsitters was largely obscure for over half a century, until the miniaturization and
affordability of aircraft components finally enabled tailsitter experimentation on a smaller scale and to a broader
audience. Consequently, development of unmanned tailsitters for research purposes exploded with notable works by
Stone et. al in 2008, which were among the first to publish on the design and flight of small-scale T-wing tailsitter
with consumer-grade electronics [5]. Over the next few years, different research groups started publishing unique
variants of the tailsitter; these include flying wing [8] [9], quad-wing [10], bi-plane [6], and even Pogo-replica [11]
designs. Tailsitters have even been the object of studies regarding novel aircraft design methods, such as Gu et. al.
optimizing the tailsitter design via coordinate descent optimization [7]. As impressive as these designs are, they
have not surmounted the fundamental challenges facing tailsitters.

While there have been great strides towards efficient and agile tailsitters, many of the challenges remaining
pertain to the software behind these aircraft. One primary unsolved challenge is the need for generic and robust
controllers that can safely stabilize tailsitters across their entire flight domain–this is difficult because the flight
domain is quite large compared to traditional aircraft. Further, canonical methods of aircraft control have small
stabilizing regions and are ill-equipped for the severely nonlinear aerodynamics in the post-stall regime. Approaches
to controller design for tailsitters can be predominately classified as either linear or nonlinear.
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Linear control methods are tried and true, once acting as the backbone behind high-performance aircraft like
fighter jets. However, as was the case with past-generation fighter jets, a linear controller for one tailsitter cannot
be applied to another without extensive flight testing and tuning. Linear techniques rely on a discrete set of
linearized models of the aircraft at different flight conditions. The simplest approach requires two controllers for
linearized models at hover and forward flight, and relies on a pilot or open-loop maneuver to switch between these
two modes [12]. More sophisticated linear methods develop dozens or even hundreds of linearized models, each with
a controller and corresponding gains, around the operating domain. For smooth operation, these approaches rely
either on a high resolution between linearization points [13], or stitching sparse linearized models together through
adaptive-model control [14] or gain-scheduling [15]. More recently, Li et. al. demonstrated Model Predictive
Control (MPC) on a tailsitter linearized at hover, which could improve smooth switching between discrete models
in the future [16]. The common trait among these works is a nauseating amount of flight testing or simulation for
a predetermined aircraft to improve controller performance. As with any linearization scheme, these controllers
are unpredictable when operating far enough away from the nearest linearized model. This presents a safety and
logistical concern, as the space of linearized models must cover the anticipated operating domain to ensure any
sense of global stability.

Researchers have also studied nonlinear approaches that in most cases require less meticulous flight testing, are
agnostic to different tailsitter variants or scales, and generally provide broader stability guarantees. This literature
can be further decomposed into coordinate transform methods [17], geometric representations of the dynamics [18],
or optimal control strategies employing numerical analysis of the dynamics [19], [20]. Pucci et. al proposes a clever
change of coordinates that enables very simple controller design that stabilizes to a reference flight trajectory.
However, this method leans on strong knowledge of the aerodynamics and an assumption of symmetry in the
aircraft’s body. In contrast to Pucci’s approach, which is indifferent to size or even vehicle configuration provided
the appropriate aerodynamics, Zhou et. al. instead uses extensive wind tunnel testing akin to linear methods to
build a high-fidelity model of their aircraft for a nonlinear controller. Geometric representations of a vehicle tracking
a desired trajectory offer a middle-ground solution that defines the aircraft across a large operating domain, while
still remaining lean and generic enough for applications to a broad set of tailsitters. One notable work by Ritz et. al.
combines an optimization routine with a geometric controller that performs online learning of the configuration’s
aerodynamics for global control [9]. The literature thus far represents significant contributions towards global
descriptions and control for tailsitters, but many of these nonlinear methods still rely on optimization schemes that
increase the computational burden of the controller, and their extension to different scales has not been properly
evaluated.

A defining metric for tailsitter design and controller development is the transition maneuver, which moves
the aircraft between hovering and forward flight. The transition maneuver is a good evaluation of a controller
because it covers a large portion of the flight domain, and its difficulty has historically been a critical barrier
for widespread adoption of tailsitter vehicles. More primitive transition maneuvers include the “stall-and-tumble”
maneuver indicated by a large altitude gain (stall) followed by a drop (tumble) and glide into forward flight. This
exercise in particular is often performed by manual pilots; in the autonomous case, it is an open-loop maneuver
that can require up to a 20 meter drop depending on the size of the UAV. When considering package delivery over
constrained airspaces like that in suburban or urban environments, the ideal transition maneuver would require
little to no altitude change. Some approaches to accomplishing constant altitude transition formulate rudimentary
trajectories and rely on the robustness of their controller to stabilize the tailsitter as best as possible [17], [19].
In contrast, other researchers such as Oosedo et. al. employ trajectory optimization to ensure transition is
fast, dynamically feasible, and requires little control effort [21]. Reddinger et. al. contributes to this work
by constraining transition maneuvers based on stall conditions and actuation limits [13]. In all of these cases,
trajectory optimization is performed offline due to computational burden which could prove to be another critical
barrier to industry adoption. The ideal transition maneuver is efficient, can operate in the altitude-constrained
airspaces of the future, and can be planned in real time on the vehicle’s hardware.

Research and development of tailsitters thus far has produced impressive small-scale platforms that can operate
over flight domains much larger than traditional multi-rotors or fixed-wing aircraft. Nonetheless, the lack of any
comprehensive studies regarding the modeling, planning, and control of tailsitters in a scalable fashion represents
an opportunity for intellectual and technological gains. In this paper, we derive a reduced-order dynamic model
for thrust-actuated tailsitters and apply a nonlinear controller for stabilizing the vehicle to an arbitrary trajectory.
Through a passive stability analysis of the dynamics, we isolate a phenomenon that makes transition at constant
altitude very challenging, and we propose a novel method to bypass this phenomenon that leverages the dynamics
of the aircraft. While this work does not relinquish reliance on a solid understanding of the vehicle’s aerodynamics,
it is an incremental step towards universal modeling, control, and planning for a scalable tailsitter aircraft.
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2 Methods and Theory

With the goal of simulating dynamically feasible transition maneuvers for a hybrid UAV tailsitter, we now
detail approaches to dynamic modeling, stability analysis, controller formulation, and trajectory generation for a
tailsitter transition maneuver. We rely on a reduced-order model that is applicable to thrust-actuated tailsitters
on a variety of scales.

2.1 Vehicle Model

The Quadrotor Biplane Tailsitter (QBiT) pictured in Figure 2 is an ideal motivating example for the study of
transition maneuvers for hybrid VTOL vehicles. The tailsitter features two parallel wings with two counter-rotating
propellers on each wing (top and bottom) such that the overall configuration resembles a quadrotor. In the absence
of control surfaces, the QBiT generates moments via differential thrust.

The QBiT was first developed by the University of Maryland’s Alfred Gessow Rotorcraft Center for the purpose
of studying scalable unmanned aerial systems [6]. The design is intended to be produced at a variety of scales
ranging from roughly 1-kg to 20-kg or more. However, the overall structure remains the same at all scales, enabling
experimentation and evaluation of controllers across different vehicle sizes. The center module allows placement of
fixed payloads–ideal for package delivery scenarios.

Figure 2: The Quadrotor Biplane Tailsitter (QBiT) configuration used as a motivating example for studying hybrid VTOL
transition maneuvers. Attached to the QBiT is a body-fixed frame that is located in reference to a fixed inertial frame. For
this project, only planar motion in the î2-î3 plane is considered, with changes only in the pitch axis by angle θ. This CAD
model was provided courtesy of Dr. Michael Avera from the United States Army Research Laboratory.

2.2 Tailsitter Dynamics

Below, we describe the governing equations for the dynamics of a thrust-actuated tailsitter in a planar side
view. We consider only the planar dynamics because the transition maneuver is typically assumed to occur in these
two dimensions [13], [21].

2.2.1 Reference frames

There are four reference frames that are useful for modeling this unique hybrid aircraft: the inertial frame
I = {î1, î2, î3}, body frame B = {b̂1, b̂2, b̂3}, flight path frame C = {ĉ1, ĉ2, ĉ3}, and the true airflow frame
E = {ê1, ê2, ê3}. These reference frames are illustrated in a planar view in Figure 3a.Note that the î1, b̂1, ĉ1, and
ê1 axes point out of the page and the inertial frame is not fixed to the body.

The body frame B is located on the vehicle’s center of mass and is oriented such that b̂2 is always parallel with
the thrust plane of the rotors. The frames C and E are both located on a virtual aerodynamic center, which is
fixed to the body regardless of the pressure distribution on the wings. These two frames are oriented based on
different airflow velocities over the wings. Frame C is aligned with the inertial velocity of the vehicle, Vi, which
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Figure 3: A side view, here defined in the y-z plane that shows (a) the reference frames I,B, C and E that are used to
describe the vehicle’s dynamics and orient different airflow contributions over the wing; (b) a free body diagram of the QBiT
during transition flight.

represents the velocity of air across the wing due to vehicle translation. The magnitude of this velocity is related
to the inertial y and z speeds as:

||Vi||2 = ẏ2 + ż2 (1)

and its orientation with respect to the horizon is defined by γ := arctan 2(ż, ẏ).
Frame E orients the aerodynamic forces by being aligned with the “true” airflow over the wing, Va, which is

a vector sum of the inertial velocity and wake velocity in the inertial frame. The wake velocity, Vw, describes the
column of air moving across the wing due to the propeller down-wash, also referred to as “prop-wash”. The wake
velocity is oriented with the body frame b̂2 axis, and its magnitude can be obtained via momentum theory [22]:

||Vw|| = η

√
(||Vi|| cosα)2 +

T
1
2ρπR

2
(2)

where T is the thrust produced by a propeller, ρ is the ambient air density, and R is the radius of the propeller.
Note the parameter η ∈ [0, 1]: it is a propeller wake efficiency factor meant to reflect inefficiencies in the wake
(e.g. turbulence or vortices) by discounting the contribution to the true airflow by the prop-wash. When η = 0,
prop wash is ignored. In contrast, η = 1 represents fully ideal flow over the wing as calculated from momentum
theory. This reduced-order model of the wake airflow had “good agreement” with blade element CFD simulations
of a rotor-blown wing for speeds under approximately 8-m/s [13]. Above this speed, Reddinger et. al. notes that
the reduced-order model overpredicts the velocity of the air over the wing.

The magnitude of Va can be found by using the Law of Cosines on the triangle created by the vectors Vi,Vw,
and Va. In other words,

||Va|| =
√
||Vw||2 + ||Vi||2 + 2||Vi|| ||Vw|| cosα (3a)

α := θ − γ (3b)

where θ is the pitch angle of the aircraft.
Because a significant portion of the wing is directly beneath the wake of the propellers, the airflow over the wing

at low speeds can be dominated by this wake, as verified by Misiorowski et. al. [23]. In this case, the actual angle
of attack on the wing can be much lower than that estimated by α in Equation 3b. The effective angle of attack,
αe, is the angle between the b̂2 and ê2 axes. This angle is found by observing that Vi is the only contribution to
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Va along the −b̂3 axis.

αe = arcsin
||Vi|| sinα
||Va||

(4)

To provide some intuition for the airflow model described above, when prop-wash is ignored: η,Vw = 0 =⇒ Va =
Vi =⇒ αe = α. The reduced-order airflow model is a lean and generalizable representation of the important
contributions from the propellers to the wing’s airflow.

2.2.2 Point-mass dynamic model

The free body diagram shown in Figure 3 enables the derivation of the vehicle dynamics for the QBiT. The
model presented here describes the QBiT as a point-mass with gravity, aerodynamic forces, and motor thrusts
acting on the body.

Restricting motion onto the y-z plane avoids any coupling terms in the rotational dynamics. The assumption
that transition can occur in this plane is in agreement with other bodies of work in this area (see [13], [17]). The
Cartesian dynamics in accordance with the free body diagram in Figure 3 can be written as the following system
with states x = [y, z, θ]T :

mÿ = (TT + TB) cos θ − L sin (θ − αe)−D cos (θ − αe) (5a)

mz̈ = −mg + (TT + TB) sin θ + L cos (θ − αe)−D sin (θ − αe) (5b)

Ixxθ̈ = Mair + l(TB − TT ) (5c)

In this system, m indicates the vehicle mass, g is the gravitational constant, Ixx is the principal moment of inertia
about the î1 (x) axis, and l denotes the distance (as measured along b̂3 axis) between each wing. The variables
TT and TB are the thrust values of the top and bottom sets of propellers. The variables L and D are lift and
drag forces, which are defined to be functions of angle of attack and airflow over the wing, i.e. L = L(αe,Va) and
D = D(αe,Va). Mair denotes any pitching moments created by the aerodynamic forces across the wing, similarly
Mair = Mair(αe,Va).

System 5 was purposefully chosen to strike a balance between a simple representation of a planar tailsitter and
a higher-fidelity model that might necessitate the use of computational methods for analysis.

2.2.3 Underlying assumptions

The dynamics have been derived based on some key underlying assumptions. We assume that the lift and
drag forces can be approximated as acting on an aerodynamic center for each wing, which can then be averaged
into a single virtual point along the b̂2 axis by taking advantage of the aircraft’s symmetry. We also assume that
this virtual aerodynamic center is coincident with the vehicle’s center of gravity to further simplify the moment
equation. This is possible on smaller platforms with thoughtful placement of the battery, electronics, and payload
in the center module. For the thrust inputs, we assume that instantaneous changes in thrust can be achieved.
Lastly, we assume that motion occurs only in the y-z plane by ensuring both motors on each wing are synchronized,
which is to say that no incidental roll (b̂2) or yaw (b̂3) is generated by the propellers.

2.3 Aerodynamics

Aerodynamics play an important role in the dynamics of the QBiT through L,D, and Mair. In the quasi-
steady-state model shown here, the coefficients of lift (CL), drag (CD), and pitching moment (CM ) are unique to
the airfoil on the vehicle; given that hybrid vehicles such as the QBiT operate over such a large flight domain,
these coefficients must be defined for an unusually large range of angle of attack. Wind tunnel data was taken for
symmetric airfoils from Sandia National Laboratories [24], which covers the full 360° pitch that the QBiT might
experience during flight. In Figure 4, wind tunnel tests for a NACA 0015 symmetric airfoil at Re = 160, 000
(corresponding to airspeeds on the order of 10-m/s) are presented for α ∈ [−180, 180], fitted with a cubic spline
interpolation. We assume that the center module contributions to the aerodynamics are negligible.

The quasi-steady-state approximation of the forces and moments generated by the wing reduces the aerodynam-
ics to a dependence only on airspeed and angle of attack, at the cost of neglecting more nuanced–yet appreciable–
behavior such as dynamic stall. Hence, the aerodynamic lift, drag, and pitching moment on the wing are found by
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Figure 4: (a) Lift, (b) Drag, and (c) Pitching Moment aerodynamic coefficients from -180° to 180° for a symmetric NACA
0015 airfoil at Re = 160, 000. Data was taken from Sandia National Laboratories wind tunnel test data [24] and fitted with
a cubic spline to maintain smoothness in the aerodynamics.

L =
1

2
ρ||Va||2SwingCL(αe) (6a)

D =
1

2
ρ||Va||2SwingCD(αe) (6b)

Mair =
1

2
c̄ρ||Va||2SwingCM (αe) (6c)

where c̄ is the chord of the wing and Swing represents the planform area of the wing (Swing = c̄b). The aerodynamic
coefficients–CL(·), CD(·), and CM (·)–are defined by the cubic spline interpolations as seen in Figure 4. This is done
to preserve smoothness in the aerodynamics to work well with the controller. Some notable properties of symmetric
airfoils are: CD(−α) = CD(α) and CL(−α) = −CL(α).

Typically wind tunnel measurements can be very noisy in the post-stall region (α > 15°) due to turbulent and
chaotic effects; for this reason, most airplanes are designed to operate within the stall limit, and those that do
operate in the post-stall regime undergo exhaustive instrumented flight tests to validate aerodynamic models. The
aerodynamic model presented here is commonly used for controller synthesis and low-fidelity simulation [9] [13].

2.4 Passive Stability Analysis

Stability analysis gives insight into an aircraft’s ability to track a desired flight path. Basic stability analysis,
such as that introduced by Etkin, often measures the pitch stiffness associated with the aircraft. Pitch stiffness is
the approximate slope of the pitching moment coefficient as a function of the angle of attack. For a flying wing
configuration such as the QBiT, passive stability at an equilibrium angle of attack requires both that the pitching
moment is zero and its slope is negative. In other words, a small increase in angle of attack from equilibrium would
produce a “nose-down” (negative) pitching moment to restore the aircraft to the equilibrium [25].

For typical aircraft with pitch control surfaces, e.g. elevators or elevons, the pitch stiffness of the aircraft can be
altered by control inputs to stabilize different angles of attack or produce desirable responses to disturbances. On
the contrary, pitching moments on the QBiT can only be produced by differential thrust. This motivates Pucci’s
approach to assessing the stability to a desired flight path [17]. This method identifies passive equilibrium angles of
attack from the nonlinear dynamics, and then determines the stability of those equilibria by linearizing the system
at a nominal flight velocity.

Pucci’s stability analysis begins by forming an equation for equilibrium angles of attack, first by considering
the forces acting on a point-thrust VTOL vehicle–those presented in Figure 3b–projected onto the body frame B
in steady state (trim) flight.

b̂2 : mab2 = L sinαe −D cosαe −mg sinα+ (TT + TB) (7a)

b̂3 : mab3 = L cosαe +D sinαe −mg cosα (7b)
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where ab2, ab3 are placeholder values for the body accelerations. Here we are interested in Equation 7b for assessing
passive stability because the control inputs, TT + TB , do not influence the b̂3 axis. We assume steady state flight
(ab2, ab3 = 0) and arrange Equation 7b into the following form:

0 = cosα− avCL(αe) cosαe − avCD(αe) sinαe (8a)

av :=
1
2ρSwing||Va||2

mg
(8b)

where av is a dimensionless variable that we will refer to as aerodynamic loading. A necessary condition for
stabilization to a desired airspeed is the existence of a pair {α, αe} that satisfies Equation 8a. Equation 7a produces
a second condition, but it can be satisfied by an arbitrary selection of (TT + TB) once {α, αe} is determined to
satisfy Equation 8a. Here, we have reduced stability to general conditions on the tailsitter’s aerodynamics.

For the remainder of this stability analysis, we will assume the propeller downwash can be ignored: η,Vw =
0 =⇒ αe = α. However, note that if we included propeller downwash, we would see control inputs enter Equation
8a suggesting the possibility for any arbitrary angle of attack to be stabilized. This will be left for future work.
We now solve Equation 8a for the aerodynamic loading.

av =
cotα

CD(α) + CL(α) cotα
(9)

Provided functions or approximations for the aerodynamic coefficients, CL(·) and CD(·), we can now assess the
existence of equilibrium angles of attack. Recall from Section 2.2.1 that in planar motion, α = θ − γ, so given a
desired flight path angle γ and the equilibria α, we can solve for the equilibrium body orientation of the vehicle.
The equilibria are plotted in Figure 5a for a NACA 0015 symmetric airfoil with lift and drag coefficients described
by Figure 4.

As seen in Figure 5a, the structure of Equation 9 leads to a bifurcation of possible solutions, which is a common
observation in classical studies of nonlinear systems and control. Often times these bifurcations occur due to
a change in control input, such as a constant torque applied to an inverted pendulum resulting in a pitchfork
bifurcation in the stable pendulum angle. Extending this analogy, we can think of the aerodynamic loading, av,
as a “virtual control input”. As we vary the airspeed by changing av, the equilibria solutions shift, appear, and
disappear! In Figure 5a, for example, another solution forms at av = 1.18 and forks into two equilibria immediately.
At av = 3.82, two equilibria meet and annihilate one another. Notably, three equilibrium orientations exist in the
region av ∈ (1.18, 3.82).
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Figure 5: (a) Equilibria angles of attack associated with a desired airspeed characterized by the dimensionless parameter
av. The equilibria are colored by stability criterion described in Equation 13 derived by Pucci [17]. The bifurcation region
is bounded by dashed lines, and a sample of three equilibria α = {3.63°, 12.8°, 17.4°} are selected for av = 2.5; (b) The
unstable equilibria are observed to coincide with the stall region associated with a NACA 0015 symmetric airfoil.

The next task is determining the stability characteristics of these equilibrium solutions, which is fully described
in the work of Pucci (see [26], Appendix A.8 p. 143). Fundamentally, an equilibrium angle of attack is determined
to be stable if the real parts of the eigenvalues corresponding to the linearized error dynamics from System 5 are
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not positive. The aforementioned error dynamics, linearized around a desired inertial velocity Vref = ẏr î2 + żr î3
are:

më ≈ 1

2
ρSwing

∂

∂ṙ

{
|ṙ|
[
−CD(α) −CL(α)
CL(α) −CD(α)

]
ṙ
}
ṙ=Vref

ė (10)

where r = [y, z]T is the position of the body in the inertial frame and e represents the state error.
Notice that the argument of ∂

∂Vi
{·} is the vector expression of the aerodynamics, Equation 6, written in the

inertial frame. The evaluation of this partial derivative is too lengthy to include in the main body of this paper, but
the signs of the eigenvalues for this partial derivative can be inferred from the eigenvalues of the following matrix:[

−2CD(α) C ′D(α)− CL(α)
2CL(α) −C ′L(α)− CD(α)

]
(11)

where the superscript (·)′ denotes the derivative with respect to the angle of attack, α. The characteristic polynomial
for this matrix is:

λ2 + p(α)λ+ 2q(α) = 0 (12a)

p(α) := 3CD + C ′L (12b)

q(α) := C2
D + CDC

′
L − CLC ′D + C2

L (12c)

Finally, we can apply Routh-Hurwitz stability criterion for a second order polynomial to determine when Equation
12 has negative real solutions, which will signify exponential growth in the system’s response. Here we arrive at
the final conditions for which an equilibrium angle of attack α satisfying Equation 8a is unstable:

p(α)q(α) < 0 OR p(α) < 0 and q(α) < 0 (13)

In Figure 5, we apply the conditions above to a NACA 0015 airfoil to arrive at an estimate of the stability for
an equilibrium given as a solution to Equation 8a. The stability criterion is formulated on a linearization of the
dynamics presented in System 5, and as such the unstable region is an estimate. However, classical understandings
of bifurcation leads to the conclusion that this unstable region extends from av ∈ (1.18, 3.82). The existence of
multiple equilibria for a given airspeed makes transitioning between hover (α = 90°) and forward flight (α ≤ 15°)
non-trivial. This will be further investigated in the results section.

2.5 The Nonlinear Geometric Controller

Armed with the dynamics presented in Section 2.2, we will now present a controller to stabilize 2-D trajectories.
We enhance a nonlinear geometric controller–formalized and demonstrated for quadrotors by Lee et. al. [27] and
Mellinger et. al. [28], respectively–to handle aerodynamic forces and moments. Outputs from a position controller
feed into an attitude controller in series leading to a cascaded, hierarchical control policy illustrated in Figure 6.
The control policy is “geometric” because it is constructed on a geometric representation of the thrust acceleration
vectors in SE(3).

Trajectory Position
Controller

Attitude
Controller

Thrust
Distributor

Tailsitter
Dynamics	

Figure 6: The control block diagram describing the nonlinear geometric controller implemented for stabilization to
a desired trajectory. For clarity, the position controller houses Equations 15–17, the attitude controller Equations
18–19, and the thrust distributor Equation 20.

The goal is to stabilize the position of the tailsitter, r = [y, z]T , along a known trajectory characterized by
zT = [rT , ṙT , r̈T ]T . We can formulate this in the form of second-order error dynamics, e = r − rT .

ë + 2ζωnė + ω2
ne = 0 (14)
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To produce error dynamics defined by a desirable damping, ζ, and natural frequency, ωn, we select Kp = ω2
n

and Kd = 2ζωn. For this study, values for Kp and Kd are selected based on critical damping (ζ = 1) and an ωn
that satisfies a desired settling time. Simulation gains and their associated units are presented in the Appendix,
Table 1.

The position controller begins by computing the desired acceleration by rearranging Equation 14 and measuring
the difference between the current state and desired trajectory.

r̈des = r̈T −Kd(ṙ − ˙rT )−Kp(r − rT ) (15)

Notice here that Kp and Kd are now 2×2 diagonal gain matrices, and r̈T acts as a feedforward acceleration term.
Once the desired acceleration is computed from Equation 15, we use System 5 in Section 2.2.2 to define a desired

thrust vector, F des. The desired thrust vector is derived from solving the translational dynamics (Equations 5a,
5b in vector form) for the control input u1 = TT + TB and substituting the desired acceleration.

F des = mr̈des +

[
0
mg

]
− [IRE]

[
−D
L

]
(16)

where the matrix [IRE] is a 2×2 rotation matrix representing a counter-clockwise rotation by the angle θ−αe. The
desired force enables explicit computation of u1 by projecting F des onto the b̂2 axis of the body frame expressed
in the inertial frame:

u1 = b̂2
T
F des (17)

Up until this point, we have proposed a method to match the total thrust of the tailsitter, u1, with the magnitude
of the desired force ||F des|| along the vehicle’s controllable axis, b̂2. The task now is to orient the body frame axis
with the direction of the desired force as measured in the inertial frame. This can be accomplished via attitude
control to a desired body orientation, determined by the orientation of b̂2 in the inertial frame. We can define the
desired body orientation from F des:

b̂2
des

=
F des

||F des||
(18)

We calculate the attitude error, eθ, simply by determining the dot product between the current body orientation

b̂2, and the desired b̂2
des

, and feed that error into the following attitude control law to determine the desired
moment, or u2.

u2 = Ixx(−KReθ −Kω θ̇)−Mair (19a)

eθ := ∠(b2, b
des
2 ) (19b)

where KR and Kω are proportional and derivative gains associated with the pitch axis. Note that the attitute rate
along the transition trajectory is assumed to be small or zero, so it is sufficient to say that ėθ ≈ θ̇. This expression
for u2 was derived in a similar fashion to u1 by solving for the control moment u2 = l(TB − TT ) in Equation 5c
and replacing θ̈ by a desired angular acceleration defined by second order error dynamics, as in Equation 14.

We can now solve for the thrust values of each set of motors (TT and TB) by solving the following system of
equations, which notably is identical to that of a planar quadrotor formulation:[

1 1
−l l

] [
TT
TB

]
=

[
u1
u2

]
(20)

where l represents the length between the rotors as measured along the b̂3 axis. Notice that the “A” matrix in this
linear equation is always full rank unless l = 0. Therefore a solution {TT , TB} will always exist for nonzero inputs
{u1, u2}.

2.6 Trajectory Generation

In Section 2.5, we formulate a controller that stabilizes the QBiT along an arbitrary known trajectory. In this
section we describe two methods of trajectory generation that transition the vehicle from a hover to forward flight.
In both cases, we are interested in a trajectory that transitions the vehicle at a constant altitude to be better suited
for the constrained airspaces of the future. Accordingly, trajectories are formulated along the î2(y) axis only.
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2.6.1 Constant acceleration

The simplest transition maneuver is, naively, one which requests a constant horizontal acceleration until a
desired cruising speed, denoted Vs, is achieved. The formulation of this trajectory is rather straightforward: it is
characterized only by a desired forward acceleration, as. The transition is defined by:

ÿr(t) = as (21a)

ẏr(t) = V0 + ast (21b)

yr(t) =
1

2
ast

2 (21c)

where V0 is an initial speed that, in the forward transition, is equal to zero. The reverse transition from cruising
to hover can be described by setting as negative and letting V0 = Vs.

The advantage of this trajectory is that it is computationally efficient, but unfortunately this method does not
take into account the vehicle dynamics. This could be problematic for real implementation where instantaneous
changes in acceleration are not feasible.
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Figure 7: (a) A trajectory generated using a desired constant acceleration; (b) Two examples of time-valued prescribed
angle of attack functions for transition maneuvers with the parameters αi = 90°, αf = 3.47°, and t∗ = 87-sec; (c) Trajectories
resulting from the mapping between airspeed and angle of attack (Equation 24) and given the prescribed angle of attack
functions from (b).

2.6.2 Prescribed angle of attack

Motivated by the shortcomings of the previous method, another trajectory was formulated that leverages the
vehicle dynamics. This method was inspired by the existence of flight equilibria discussed in Section 2.4.

In particular, the prescribed angle of attack method relies on a known mapping between the forward flight
speed and equilibrium pitch angle; an example of this mapping is Figure 5a, where av is directly proportional
to the airspeed squared (this relationship is defined by Equation 8b). In that section, we observe that multiple
equilibrium body orientations may exist for a desired airspeed. However, if we flip the axes, we can instead interpret
Figure 5a as: “for a given equilibrium angle of attack, αd, there exists one and only one corresponding airspeed”.
In mathematics, the mapping α 7→ av is considered surjective or onto. Critically, this is not true for the reverse
mapping indicating we cannot get a unique angle of attack from a desired airspeed.

We first define a desired angle of attack as an arbitrary function of time, αd = αd(t). There are no obvious
restrictions on αd(t) because the mapping is continuous and relatively smooth. Here we propose two functions for
αd(t) and assess their effectivenss in Section 2.6.2. The first function is a linear interpolation between two desired
angles of attack: αi, αf , corresponding to the initial and final angles of attack, respectively.

αd(t) =

{
αi−

(
αi−αf

t∗

)
t t ≤ t∗

αf t > t∗
(22)

where t∗ is the target transition time in seconds. This time can be tuned for different objectives such as minimizing
time in transition or satisfying actuation constraints. The second proposed function is a parabola also defined by
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αi, αf , and the target transition time.

αd(t) =

{
αf−

(
αf−αi

t∗2

)
(t− t∗)2 t ≤ t∗

αf t > t∗
(23)

Both the parabola and linear interpolation can be seen in Figure 7b for αi = 90°, αf = 3.47°, and t∗ = 87-sec.
Given a prescribed angle of attack, the forward airspeed is extracted as a function of time based on the mapping

between α and av. For a constant altitude transition maneuver, the airspeed is equal to ẏ. Initially, we may try
to use the static relationship between α and av expressed by Equation 9 to solve for the airspeed. But since
this equation is derived at steady state, a trajectory generated from Equation 9 would not account for any body
accelerations experienced during transition.

Instead, we can leverage the aircraft’s dynamics by starting with the forces projected onto the b̂3 axis, as in
Equation 7b, and noting that for a constant altitude transition maneuver: ab3 = −ÿ(t) sin θ, and in the absence
of prop-wash, θ = α. In Section 2.4, Vr was a desired reference velocity with both a y and z component. For a
constant altitude maneuver, Vr only has a y component, which will be denoted by ẏr(t). We can further simplify
Equation 9 by assuming no prop-wash; i.e. αe = α. The last step is to prescribe a desired angle of attack versus
time, α = αd(t). The resulting expression is a first-order, nonlinear ordinary differential equation of ẏr(t) with
respect to time.

ÿr(t) +

1
2ρSwing

[
CL(αd(t)) cosαd(t) + CD(αd(t)) sinαd(t)

]
m sinαd(t)

ẏr
2(t) = g cotαd(t) (24)

This nonlinear ODE is presented in the form: ÿr(t) + A(t)ẏr
2(t) = B(t) where the coefficients A(t), B(t) are

time-dependent precisely because of the prescribed angle of attack, αd(t). The solution to Equation 24 above is
a time-valued function, ẏr(t), that satisfies both the dynamics of the QBiT and the desired time evolution of the
angle of attack on the wing. With an expression for the horizontal airspeed, ẏr(t), we can integrate and differentiate
to get the position (yr(t)) and acceleration (ÿr(t)), respectively. The reverse transition is generated in a similar
fashion, given the appropriate prescribed angle of attack.

In summary, we have provided a method of generating dynamically feasible, constant altitude transition ma-
neuvers that can, in theory, result in a desired time evolution of the angle of attack of the wings. There are two
unfortunate caveats to this method: 1) care must be taken in designing αd(t) such that the solution to Equation
24 obeys physical limitations of the system (e.g. thrust limits), and 2) while the solution is built on the existence
of equilibria, it does not account for the stability of those fixed points. As we will see in Section 3.3, any small
deviation from the unstable equilibria will push the QBiT to nearby stable ones. This method was formulated in
1-D, but future work will consider planar trajectories and the reduced-order prop-wash model, both of which could
have added benefits of transitioning while enforcing constraints on angle of attack such as stall.

2.7 Simulation Environment

Validation of the methods described above was performed with a simulation environment handwritten in MAT-
LAB [29]. The point-mass dynamic model described in Section 2.2.2 was simulated following trajectories taken
from Section 2.6, and the vehicle was stabilized by the controller formulated in Section 2.5. The overall structure
and code of the simulation can be seen in the Appendix, Figure 15.

Iterations occurred at a rate of 100 Hz (dt = 0.01 seconds) in order to minimize integration errors while also
resembling the performance of typical microcontrollers available today. Numerical integration of the dynamics was
performed using the 4th-order Runge-Kutta method which has a local truncation error on the order of O(dt5) [30].
The physical parameters and controller gains used for results to follow are summarized in the Appendix, Table 1.

3 Results and Discussion

In this section, we first use trim analysis of the dynamics to characterize the performance of a tailsitter across
a variety of flight speeds, and identify the effects of the prop-wash model in steady-level flight. We then evaluate
the controller’s ability to track two constant-altitude method of transition from hover to forward flight.
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3.1 Trim Analysis

Trim analysis is a useful tool for assessing the flight characteristics of an aircraft across its flight domain, such
as how the aerodynamic forces or stable angle of attack varies with airspeed or flight path angle. Recall that
trim flight is achieved when the aircraft is not accelerating. In the case of the QBiT, numerical trim analysis is
particularly useful for studying the effects of the reduced-order prop-wash airflow model presented in Section 2.2.1,
where an equilibrium solution for the angle of attack is quite difficult to solve for analytically.

In this section, we explore the effects that the prop-wash model has on the QBiT at steady-level flight. We
numerically estimated the equilibrium angle of attack for airspeeds in the range ||Vi|| ∈ [1, 30] incremented by
1-m/s and prop-wash efficiencies η ∈ [0, 1] incremented by 0.05 for a total of 630 trim points. The hand-built trim
solver uses gradient descent to converge on the equilibrium thrust and body orientation, θ, for each flight condition,
and the tailsitter is simulated for 5 seconds using these initial conditions to let the system stabilize to steady-state
flight.
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Figure 8: (a) The equilibrium angle of attack corresponding to a forward flight speed, Vi, plotted for varying prop-wash
efficiency ranges; (b) The stable angle of attack varied against the aerodynamic loading, av, for select prop-wash efficiencies.
These values are compared with the analytical expression for av described in Equation 9.

The main results of the trim analysis are summarized in Figure 8. In Figure 8a, the equilibrium angle of attack
is plotted for steady-level flight, colored by a range of prop-wash efficiencies as indicated to the right of the plot.
For each range of efficiencies, a smooth fit is applied to indicate the general trend of the equilibrium angles. In
Figure 8b, we plot the equilibrium angle of attack versus the aerodynamic loading, av, which is computed from
Equation 8b using the true airflow speed, ||Va||. These trends are compared with the analytical expression for av
as a function of the angle of attack derived in Equation 9 which does not include the prop-wash model.

In Figure 8a, we observe that the discontinuous jump in the equilibrium angle of attack occurs at increasing
airspeed with decreasing prop-wash efficiency (orange to blue) indicative of an inverse relationship. The disconti-
nuity itself is a consequence of the trim solver’s gradient descent method, which never converges on the unstable
region (such as that revealed in Section 2.4), opting for a nearby stable equilibrium instead. The location, or
airspeed, at which discontinuity occurs is reflective of the relationship between the true airflow over the wing as
opposed to the inertial velocity of the aircraft. In this context, the aerodynamic loading is more appropriate to
analyze discontinuity because it describes the airflow over the wing regardless of whether it is due to prop-wash or
translation.

In Figure 8b, we visualize the effect of prop-wash by comparing the numerically solved trim values to the
analytical solution that neglects prop-wash. In contrast to Figure 8a, the discontinuity occurs roughly at the same
location (av ≈ 3.82) confirming that airflow, not inertial velocity, is the dominating factor in determining when
this discontinuity occurs. Again we note that for av < 2 the shape of the equilibria varies considerably between
different prop-wash efficiencies. Beyond this value, however, all prop-wash conditions converge onto the analytical
approximation as the inertial velocity dominates the airflow characteristics of the wing. The implication here is
that at low speeds prop-wash can have significant effects on both the location and shape of equilibria.
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3.2 Transition 1: Constant Acceleration

In the first transition maneuver, the vehicle attempts a forward transition using a trajectory derived from a
constant acceleration. In this transition we assume no prop-wash and the flight path is horizontal, so αe = α = θ.
The vehicle begins at hover with θ = 90° and accelerates forward at a rate of 2-m/s2 to a cruising airspeed of
25-m/s. The simulation continues for an additional 4 seconds to capture the response from the controller.
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Figure 9: Results for a constant altitude transition maneuver occurring with a constant forward acceleration of 2-m/s.
(a) The states indicating the position and body orientation of the QBiT throughout the transition. The green dotted line
indicates when a jump in the equilibrium angle of attack occurs, and the black dotted line marks the start of forward cruise;
(b) The thrusts on the top and bottom wings produced by the controller in response to the trajectory. The dotted lines
indicate approximate thrust limits for a set of propellers.

The states and thrust inputs are plotted in Figure 9. The transition maneuver takes only 12.5-sec and requires
approximately 150-m of horizontal space. The maximum error in y and z from the trajectory are 0.24-m and 0.06-
m, respectively, indicating reasonable tracking abilities for this maneuver. However, at t = 12.1-sec, the vehicle
experiences a sudden discontinuous jump in the equilibrium angle of attack from θ = 14.1° to θ ≈ 2.33°. This
discontinuity sparks a very large response from the controller and the vehicle never truly recovers.

The jump in pitch angle can be explained by the bifurcation phenomena existing in the equilibria angle of
attack. In transition, the discontinuity occurs when av ≈ 3.82 (||Vi|| = 24-m/s) which is notably where the number
of equilibria solutions reduces from 3 to 1 as seen in Figure 5a. Since the vehicle is always accelerating, av can
never decrease, and therefore the equilibrium pitch angle jumps down to the single remaining equilibrium: 2.33°.
In this particular scenario, the controller response is large enough to exceed the lower bound on the thrust for both
wings. In reality this maneuver would likely cause a loss of control and presents a serious danger for VTOL aircraft
attempting level transition.

3.3 Transition 2: Prescribed Angle of Attack

In the constant acceleration trajectory, we saw a large discontinuity in the pitch angle that would likely lead to
a grounded aircraft. The method described in Section 3.3 could perhaps mitigate this by enforcing a continuous
angle of attack. Below we employ the parabola trajectory (which can be seen in Figure 7b) in an attempt to enforce
a continuous pitch angle throughout a transition to the cruising speed of 25-m/s. As was the case with the previous
attempt, prop-wash is ignored and the transition occurs at a constant altitude.

The results for this trajectory were below satisfactory. The transition takes over 100 seconds to complete
and requires over 1.3-km of horizontal airspace. This is a consequence of trying to minimize the harsh negative
acceleration necessary for slowing the vehicle down to match the changing equilibria. The maximum y and z
position errors for this maneuver are 0.25-m and 0.15-m, respectively. The altitude error is 3x larger than that
in the constant acceleration case. The matter worsens when assessing the controller’s response: between time
t ∈ [65, 69], corresponding to a sudden negative acceleration, the thrust is sporadic and unpredictable as the
controller tries to stabilize the vehicle. While pitch tracking is very good initially (error[θ] < 0.11°) for t < 65),
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Figure 10: Results for a transition maneuver using a parabolic desired angle of attack function (a) The horizontal speed,
acceleration, and pitch angle compared to the trajectory values; (b) The thrusts on the top and bottom wings produced by
the controller in response to the trajectory. The dotted lines represent thrust limits for the motors on each wing.

the error jumps to roughly 12° for t ∈ [65, 97]. At t = 97 the pitch angle seems to settle back to the desired angle
of attack but requires a large step response to do so.

Despite the shortcomings, this method has some useful insights. As designed, the negative acceleration decreases
av in order track the equilibria, stable or not, that coincides with the desired angle of attack. As we noted in Section
2.4, the equilibria in the region α ∈ [10, 14] are unstable. As such, what we are actually observing is the controller
endlessly failing to stabilize to an unstable equilibria, instead settling to stable equilibria until time t = 97 when
there are no longer multiple solutions. This phenomenon highlights the need for methods to stabilize any desired
pitch angle either through the addition of control surfaces or drawing inspiration from similar problems in classical
nonlinear control.

This method does have two advantages over the constant acceleration trajectory. We no longer see step responses
at the beginning of the transition maneuver because the acceleration is continuous. This could perhaps avoid
conditions leading to loss of control at the beginning of transition. The second advantage is that we have much
more control of the time evolution of the wing’s angle of attack with this method, so long as we do not cross the
unstable region of equilibria. If we were to remove the constant altitude constraint and apply this method, it is
possible to design a 2-D transition maneuver that obeys stall constraints on the angle of attack without the need
for numerical optimization.

4 Conclusions and Future Work

In this paper, we considered problems related to the transition maneuvers of hybrid VTOL for applications
in package delivery. We first derived equations of motion for a reduced-order dynamic model of a generic thrust-
actuated tailsitter. We performed a stability analysis of the vehicle for tracking reference velocities, then outlined
a nonlinear geometric controller that stabilizes the QBiT to an arbitrary trajectory. Two methods of trajectory
generation were described, the latter being a novel attempt to leverage the unique mapping between a winged
VTOL’s angle of attack and its airspeed in 1-D. These trajectories were then evaluated in a hand-built simulation
environment to assess the potential for real-world implementation.

Results from this study indicate that even for low accelerations, forward transition is very difficult: the existence
and nature of equilibrium angles of attack can result in a discontinuous jump for a constant altitude maneuver
if the controller does not actively handle the stability of an equilibrium. The bifurcation of equilibria presents a
real danger for aircraft attempting to operate in the post-stall regime, and this work clearly demonstrates its effect
on the transition maneuver in a controlled simulation. An attempt to force a continuous time evolution for the
pitch angle, essentially avoiding a discontinuity due to bifurcation, failed for two reasons: the vehicle lacks control
surfaces that can stabilize arbitrary equilibria, and the controller relies on the passive stability of an equilibria to
stabilize the aircraft.
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This work has produced indicators that constant altitude transition with a continuously-defined pitch angle is
possible, albeit difficult and nuanced. In future work, we will consider what types of functions for the prescribed
angle of attack might lend itself to stable and continuous transition. More importantly, we will consider ways to
stabilize the unstable equilibria using classical approaches from nonlinear control (e.g. energy shaping) that may
deviate from the geometric controller presented in this work. On the planning side, we will work to formulate this
trajectory generation method in 2-D. At the cost of unconstrained altitude behavior, a 2-D formulation of this
method could provide a transition satisfying constraints of angle of attack in a computationally efficient fashion.
Lastly, we will make efforts towards integrating the prop-wash model into this framework, further expanding the
stability of the aircraft by leveraging its effect on the angle of attack. The implications of this work, present and
future, are more efficient, predictable, and capable UAVs for use in autonomous package delivery in constrained
environments.
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Appendices

A Controller Step Responses

Hover

Figure 11: Step responses of the geometric controller at hover for (a) a position error of ∆y = −1 and ∆z = −1 with an
approximate settling time of 1.5-sec; (b) an attitude error of ∆θ = −pi/4 and an approximate settling time of 1-sec.

Cruising

Figure 12: Step responses of the geometric controller at cruise for (a) an initial speed error of ∆Vi = −3m/s with a
corresponding settling time of approximately 1.5-sec; (b) an initial attitude error of ∆θ = π/4 with a settling time of roughly
0.2-sec.
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B Data Sets

Transition - constant acceleration

Figure 13: The full sets of figures for a constant-acceleration forward transition. This includes the states, state derivatives,
aerodynamic forces and pitching moment, angles of attack, flight path angle, and controller outputs.
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Transition - prescribed AoA

Figure 14: The full sets of figures for a forward transition with a prescribed parabolic angle of attack. This includes the
states, state derivatives, aerodynamic forces and pitching moment, angles of attack, flight path angle, and controller outputs.
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C Simulation Environment

Code Structure and Parameters
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Figure 15: A flowchart indicating the sequence of events and flow of information for the main simulation script
in MATLAB. Blocks with a (m) sign indicate separate MATLAB files

Parameter Value Units

Physical Parameters
Mass (m) 0.8652 kg

Inertia (Iyy) 9.77E-03 kg-m2

Arm Length (l) 0.244 m
Wing Chord (c̄) 0.087 m
Wing Span (b) 1.016 m

Rotor Diameter (2R) 0.229 m
Min Thrust (Tmin) 0 N

Max Thrust - 2 Motors (Tmax) 5.886 N
Thrust-Weight Ratio (TW ) 1.387 -

Controller Gains
Proportional - Position (Kp) diag(11.6,17.4) m−1

Derivative - Position (Kd) diag(6.82,6.82) s-m−1

Proportional - Attitude (KR) 74.73 rad−1

Derivative - Attitude (Kω) 17.29 s-rad−1

Table 1: A summary of the physical parameters and controller gains used in the simulation of transition maneuvers
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Code

Listing 1: The main MATLAB file the handles initialization, trajectory generation, dynamics, and plotting.

1 %%% Simulating the dynamics of the qbit. This script will establish state

2 %%% variables , get a trajectory , input that trajectory into a controller to

3 %%% get commands , and simulate the dynamics subject to those inputs.

4 %%% Spencer Folk 2020

5

6 clear

7 clc

8 close all

9

10 % Bools / Settings

11 aero = true; % This bool determines whether or not we compute aerodynamic forces

12 animate = false; % Bool for making an animation of the vehicle.

13 save_animation = false; % Bool for saving the animation as a gif

14 integrate_method = "rk4"; % Type of integration - either ’euler ’ or ’rk4 ’

15 traj_type = "prescribed_aoa"; % Type of trajectory:

16 % "cubic",

17 % "trim" (for steady state flight),

18 % "increasing" (const acceleration)

19 % "decreasing" (const decelleration)

20 % "prescribed_aoa" (constant height , continuous AoA)

21 % "stepP" (step response in position at hover)

22 % "stepA_hover" (step response in angle at hover)

23 % "stepV" (step response in airspeed at trim)

24 % "stepA_FF" (step response in angle at forward flight)

25

26 %% Initialize Constants

27 in2m = 0.0254;

28 g = 9.81;

29 rho = 1.2;

30 stall_angle = 10; % deg , identified from plot of cl vs alpha

31 dt = 0.01; % Simulation time step

32

33 eta = 0.0; % Efficiency of the down wash on the wings from the propellers

34

35 linear_acc = 2; % m/s^2, the acceleration/decelleration used in

36 % "increasing" and "decreasing" trajectories

37 angular_vel = -1; % deg/s, the desired change in attitude used by the

38 % "prescribed_aoa" trajectory

39 V_s = 25; % m/s, set velocity used in "increasing", "decreasing", and

40 % "trim" trajectories ...

41 end_time = 5; % Duration of trajectory , this will be REWRITTEN by all but

42 % "trim" and "step___" trajectories.

43

44 step_angle = -pi/4; % the angular step used by stepA_hover (positive counter clockwise)

45 step_y = -1; % step in the x direction used by stepP

46 step_z = -1; % step in the z direction used by stepP

47 step_V = -3; % step in forward airspeed used by stepV

48

49 buffer_time = 4; % s, sim time AFTER transition maneuver theoretically ends

50 % ... this is to capture settling of the controller

51

52 %% Vehicle Parameters

53 % Load in physical parameters for the qbit

54

55 % CRC 5in prop

56 % m_airframe = 0.215;

57 % m_battery = 0.150;

58 % m = m_airframe + m_battery;

59 %

60 % Ixx = 2.32e-3;

61 % span = 15* in2m;

62 % l = 6*in2m;

63 % chord = 5*in2m;

64 % R = 2.5* in2m;

65

66 % CRC 9in prop (CRC -3 from CAD)

67 % Compute a scaling factor based on change in wing span:
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68 span = 2*0.508; % Doubled for biplane set up

69 l = 0.244;

70 chord = 0.087;

71 R = 4.5* in2m; % Estimated 9in prop

72

73 scaling_factor = span /(15* in2m);

74 % m = (0.3650) *( scaling_factor ^3); % Mass scales with R^3

75 m = 0.8652; % This is the value of expression above^ but we want it fixed

76 % so we can change the span without worry

77 % Ixx = (2.32e-3)*( scaling_factor ^5);

78 Ixx = 0.009776460905350; % This is the value of expression above^ but we want it fixed

79 % so we can change the span without worry

80

81 %% Generate Airfoil Look -up

82 % This look up table data will be used to estimate lift , drag , moment given

83 % the angle of attack and interpolation from this data.

84 [cl_spline , cd_spline , cm_spline] = aero_fns("naca_0015_experimental_Re -160000. csv");

85

86 %% Trajectory Generation

87 % Generate a trajectory based on the method selected. If cubic , use cubic

88 % splines. If trim , create a constant speed , trim flight.

89

90 if traj_type == "cubic"

91 % waypoints = [0 ,40; 0,0];

92 % waypoints = [0,0,10 ; 0 ,10,10]; % aggressive maneuver

93 % waypoints = [0,20,40 ; 0,0,0]; % Straight line horizontal trajectory

94 waypoints = [0,80 ,160 ; 0,0,0]; % Straight line horizontal trajectory , longer

95 % waypoints = [0,0,0 ; 0, 20, 40]; % Straight line vertical trajectory

96 % waypoints = [0,10,40 ; 0 ,10,10]; % Larger distance shows off lift benefit

97 % waypoints = [0,20,40 ; 0,5,10]; % diagonal

98 % waypoints = [0,10,20,30,40 ; 0,10,0,-10,0]; % zigzag

99 % waypoints = [0,0 ; 0, -10]; % Drop

100 % waypoints = [0,0 ; 0, 10]; % rise

101

102 [traj_obj , end_time] = qbit_spline_generator(waypoints , V_s);

103

104 % Use this traj_obj to get our desired y,z at a given time t

105 traj_obj_dot = fnder(traj_obj ,1);

106 traj_obj_dotdot = fnder(traj_obj ,2);

107

108 init_conds = [m*g/2; m*g/2 ; pi/2];

109

110 % Time vector

111 t_f = end_time;

112 time = 0:dt:t_f;

113

114 fprintf("\nTrajectory type: Cubic Spline")

115 fprintf("\n-----------------------------\n")

116

117 elseif traj_type == "trim"

118 % In the trim mode , we have to have a good initial guess for the trim

119 % condition , so that the QBiT isn ’t too far from the steady state value

120 % at the beginning of the trajectory!

121

122 % This involves solving for T_top (0), T_bot (0), theta (0)

123 x0 = [m*g/2; m*g/2; pi/4];

124 fun = @(x) trim_flight(x, cl_spline , cd_spline , cm_spline , m,g,l, chord , span , rho , eta , R,

V_s);

125 % options = optimoptions(’fsolve ’,’Display ’,’iter ’);

126 options = optimoptions(’fsolve ’,’Display ’,’none’,’PlotFcn ’,@optimplotfirstorderopt);

127 [init_conds ,~,~,output] = fsolve(fun ,x0,options);

128

129 % output.iterations

130

131 % Time vector

132 t_f = end_time;

133 time = 0:dt:t_f;

134

135 fprintf("\nTrajectory type: Trim")

136 fprintf("\n---------------------\n")

137 fprintf("\nTrim estimate solved: \n")
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138 fprintf("\nT_top = %3.4f",init_conds (1))

139 fprintf("\nT_bot = %3.4f",init_conds (2))

140 fprintf("\ntheta = %3.4f\n",init_conds (3))

141

142 waypoints = [0 , V_s*end_time ; 0, 0];

143 elseif traj_type == "increasing"

144 % In this mode we use a constant acceleration to go from hover to V_s.

145 % Therefore just set the initial condition to 0.

146

147 init_conds = [m*g/2; m*g/2 ; pi/2];

148 V_end = V_s;

149 a_s = linear_acc; % m/s^2, acceleration used for transition

150

151 end_time = V_end/a_s + buffer_time;

152

153 % Time vector

154 t_f = end_time;

155 time = 0:dt:t_f;

156

157 fprintf("\nTrajectory type: Linear Increasing")

158 fprintf("\n----------------------------------\n")

159

160 elseif traj_type == "decreasing"

161 % Constant deceleration from some beginning speed , V_start , to hover.

162

163 % Need to solve for an estimate of trim flight:

164 x0 = [m*g/2; m*g/2; pi/4];

165 fun = @(x) trim_flight(x, cl_spline , cd_spline , cm_spline , m,g,l, chord , span , rho , eta , R,

V_s);

166 % options = optimoptions(’fsolve ’,’Display ’,’iter ’);

167 options = optimoptions(’fsolve ’,’Display ’,’none’,’PlotFcn ’,@optimplotfirstorderopt);

168 [init_conds ,~,~,output] = fsolve(fun ,x0,options);

169

170 V_start = V_s;

171 a_s = linear_acc; % m/s^2, decelleration used for transition

172 end_time = V_start/a_s + buffer_time;

173

174 % Time vector

175 t_f = end_time;

176 time = 0:dt:t_f;

177

178 fprintf("\nTrajectory type: Linear Decreasing")

179 fprintf("\n----------------------------------\n")

180

181 elseif traj_type == "prescribed_aoa"

182 % If it’s constant height , design a desired AoA function

183 % return a corresponding v(t), a(t), y/z(t) from that.

184

185 % Need to solve for an estimate of trim flight:

186 % x0 = [m*g/2; m*g/2; 0];

187 % fun = @(x) trim_flight(x, cl_spline , cd_spline , cm_spline , m,g,l, chord , span , rho , eta

, R, V_s);

188 % % options = optimoptions(’fsolve ’,’Display ’,’iter ’);

189 % options = optimoptions(’fsolve ’,’Display ’,’none ’);

190 % [init_conds ,~,~,output] = fsolve(fun ,x0 ,options);

191

192 a_v = 1/2* rho*chord*span*V_s ^2/(m*g);

193 x0 = 1e-3;

194 options = optimoptions(’fsolve ’,’Display ’,’none’);

195

196 fun = @(x) a_v - cot(x)/( ppval(cd_spline , x*180/pi) + ppval(cl_spline , x*180/pi)*cot(x));

197

198 [init_conds ,~,~,output] = fsolve(fun , x0, options);

199

200 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

201 % Constructing alpha_des:

202 alpha_f = init_conds(end); % Final value for alpha_des

203 alpha_i = pi/2; % Initial value for alpha_des

204

205 alpha_traj_type = "parabolic";

206 if alpha_traj_type == "linear"
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207 aoa_rate = angular_vel *(pi/180); % Rate of change of AoA , first number in degrees

208 end_time = abs(alpha_f - alpha_i)/abs(aoa_rate) + buffer_time;

209 t_f = end_time;

210 time = 0:dt:t_f;

211

212 alpha_des = alpha_i + aoa_rate*time;

213 alpha_des(time >(end_time -buffer_time)) = alpha_f;

214 elseif alpha_traj_type == "parabolic"

215 vertex_time = 87; % seconds , time location of the vertex of parabola

216 end_time = vertex_time + buffer_time; % seconds

217 t_f = end_time;

218 time = 0:dt:t_f;

219

220 a_coeff = (alpha_i - alpha_f)/(( end_time -buffer_time)^2);

221 alpha_des = alpha_f + a_coeff *(time -(end_time -buffer_time)).^2;

222 alpha_des(time >(end_time -buffer_time)) = alpha_f;

223

224 elseif alpha_traj_type == "decay"

225 aoa_tau = 5; % seconds , time constant of first order decay

226 % used in alpha_traj_type = "decay"

227 end_time = 4* aoa_tau + buffer_time; % seconds , we choose this.

228 t_f = end_time;

229 time = 0:dt:t_f;

230

231 alpha_des = alpha_f + (alpha_i - alpha_f)*exp(-time./ aoa_tau);

232 end

233

234 % Get temp trajectory variables and save them

235 accel_bool = true; % Consider acceleration when generating the trajectory

236 [y_des , ydot_des , ydotdot_des ]= prescribed_aoa_traj_generator(dt,time ,alpha_des ,cl_spline ,

cd_spline ,rho ,m,g,chord ,span , accel_bool);

237

238 fprintf("\nTrajectory type: Prescribed AoA")

239 fprintf("\n-------------------------------\n")

240

241 elseif traj_type == "stepP" || traj_type == "stepA_hover"

242 % For step hover , this is easy , we just need to set our trajectory to

243 % zeros for all time

244 time = 0:dt:end_time;

245

246 fprintf("\nTrajectory type: Step Response at Hover")

247 fprintf("\n---------------------------------------\n")

248

249 elseif traj_type == "stepV" || traj_type == "stepA_FF"

250 % For the step in airspeed , we need to first set trim just like "trim"

251 x0 = [m*g/2; m*g/2; pi/4];

252 fun = @(x) trim_flight(x, cl_spline , cd_spline , cm_spline , m,g,l, chord , span , rho , eta , R,

V_s);

253 % options = optimoptions(’fsolve ’,’Display ’,’iter ’);

254 options = optimoptions(’fsolve ’,’Display ’,’none’,’PlotFcn ’,@optimplotfirstorderopt);

255 [init_conds ,~,~,output] = fsolve(fun ,x0,options);

256

257 % output.iterations

258

259 % Time vector

260 t_f = end_time;

261 time = 0:dt:t_f;

262

263 fprintf("\nTrajectory type: Step in Flight")

264 fprintf("\n-------------------------------\n")

265 else

266 error("Incorrect trajectory type -- check traj_type variable")

267 end

268

269 fprintf(strcat("Integration Method: ",integrate_method));

270 fprintf(strcat("\nStep size: ",num2str(dt),"-sec"));

271 fprintf("\n----------------------------------\n")

272

273 %% Initialize Arrays

274

275 %%% TIME IS INTITALIZED IN THE SECTION ABOVE
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276

277 % States

278 y = zeros(size(time));

279 z = zeros(size(time));

280 theta = zeros(size(time));

281

282 ydot = zeros(size(time));

283 zdot = zeros(size(time));

284 thetadot = zeros(size(time));

285

286 ydotdot = zeros(size(time));

287 zdotdot = zeros(size(time));

288 thetadotdot = zeros(size(time));

289

290 % Inputs

291

292 if traj_type == "trim" || traj_type == "decreasing"

293 T_top = init_conds (1)*ones(size(time));

294 T_bot = init_conds (2)*ones(size(time));

295

296 else

297 T_top = m*g*ones(size(time));

298 T_bot = m*g*ones(size(time));

299 end

300 % Misc Variables (also important)

301 alpha = zeros(size(time));

302 alpha_e = zeros(size(time));

303 gamma = zeros(size(time));

304

305 L = zeros(size(time));

306 D = zeros(size(time));

307 M_air = zeros(size(time));

308

309 Vi = zeros(size(time));

310 Va = zeros(size(time));

311 Vw = zeros(size(time));

312

313 % Bookkeeping the airflow over the top and bottom wings

314 Vw_top = zeros(size(time));

315 Vw_bot = zeros(size(time));

316

317 Fdes = zeros(2,length(time)); % Desired force vector

318

319 % Power consumption

320 Ptop = zeros(size(time));

321 Pbot = zeros(size(time));

322

323 % Initial conditions:

324 theta (1) = pi/2;

325 y(1) = 0;

326 z(1) = 0;

327 if traj_type == "trim" || traj_type == "decreasing"

328 ydot (1) = V_s;

329 theta (1) = init_conds (3);

330 elseif traj_type == "stepV"

331 ydot (1) = V_s + step_V;

332 theta (1) = init_conds (3);

333 elseif traj_type == "stepA_FF"

334 ydot (1) = V_s;

335 theta (1) = init_conds (3) + step_angle;

336 elseif traj_type == "stepP"

337 y(1) = step_y;

338 z(1) = step_z;

339 elseif traj_type == "stepA_hover"

340 theta (1) = pi/2 + step_angle;

341 end

342 zdot (1) = 0;

343

344 % Trajectory state

345 desired_state = zeros(6,length(time)); % [y, z, ydot , zdot , ydotdot , zdotdot]

346 desired_state (:,1) = [y(1);z(1);ydot (1);zdot (1);ydotdot (1);zdotdot (1)];
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347

348 %% Main Simulation

349

350 for i = 2: length(time)

351

352 % Retrieve the command thrust from desired trajectory

353 current_state = [y(i-1), z(i-1), theta(i-1), ydot(i-1), zdot(i-1), thetadot(i-1)];

354 current_time = time(i);

355

356 % Get our desired state at time(i)

357

358 if traj_type == "cubic"

359 if time(i) < end_time

360 yz_temp = ppval(traj_obj ,time(i));

361 yzdot_temp = ppval(traj_obj_dot ,time(i));

362 yzdotdot_temp = ppval(traj_obj_dotdot ,time(i));

363 else

364 yz_temp = waypoints(:,end);

365 yzdot_temp = [0;0];

366 yzdotdot_temp = [0;0];

367 end

368 elseif traj_type == "trim" || traj_type == "stepV" || traj_type == "stepA_FF"

369 yzdotdot_temp = [0 ; 0];

370 yzdot_temp = [V_s ; 0];

371 yz_temp = [V_s*time(i-1) ; 0];

372 elseif traj_type == "increasing"

373 if time(i) < (end_time -buffer_time)

374 yzdotdot_temp = [a_s ; 0];

375 yzdot_temp = [a_s*time(i-1) ; 0];

376 yz_temp = [(1/2)*a_s*(time(i-1)^2) ; 0];

377 else

378 yzdotdot_temp = [0 ; 0];

379 yzdot_temp = [V_s ; 0];

380 yz_temp = [(1/2)*a_s *(( end_time -buffer_time)^2) + V_s*(time(i) - (end_time -

buffer_time)) ; 0];

381 end

382 elseif traj_type == "decreasing"

383 if time(i) < (end_time -buffer_time)

384 yzdotdot_temp = [-a_s ; 0];

385 yzdot_temp = [V_start -a_s*time(i-1) ; 0];

386 yz_temp = [V_start*time(i-1) -(1/2)*a_s*(time(i-1) ^2) ; 0];

387 else

388 yzdotdot_temp = [0 ; 0];

389 yzdot_temp = [0 ; 0];

390 yz_temp = [V_start *(end_time -buffer_time) - 0.5* a_s*(end_time -buffer_time)^2 ; 0];

391 end

392 elseif traj_type == "prescribed_aoa"

393 % Take the trajectory generation section and read from there

394 time_temp = round(end_time -buffer_time -dt ,2);

395 if time(i) < (end_time -buffer_time)

396 yzdotdot_temp = [ydotdot_des(i); 0];

397 yzdot_temp = [ydot_des(i); 0];

398 yz_temp = [y_des(i); 0];

399 else

400 yzdotdot_temp = [0;0];

401 yzdot_temp = [V_s ; 0];

402 yz_temp = [y(time == time_temp) + V_s*(time(i) - (end_time -buffer_time)) ; 0];

403 end

404 elseif traj_type == "stepA_hover" || traj_type == "stepP"

405 yzdotdot_temp = [0 ; 0];

406 yzdot_temp = [0 ; 0];

407 yz_temp = [0 ; 0];

408 end

409

410 desired_state (:,i) = [yz_temp ’ , yzdot_temp ’ , yzdotdot_temp ’]; % 6x1

411

412 % Find the current airspeed and prop wash speed

413 Vi(i-1) = sqrt( ydot(i-1)^2 + zdot(i-1)^2 );

414

415 % Compute orientations

416 if abs(Vi(i-1)) >= 1e-10
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417 gamma(i-1) = atan2(zdot(i-1), ydot(i-1)); % Inertial orientation

418 else

419 gamma(i-1) = 0;

420 end

421 alpha(i-1) = theta(i-1) - gamma(i-1); % Angle of attack strictly based on inertial speed

422

423 % Get prop wash over wing via momentum theory

424 T_avg = 0.5*( T_top(i-1) + T_bot(i-1));

425

426 % Vw(i-1) = 1.2* sqrt( T_avg /(8* rho*pi*R^2) );

427 Vw(i-1) = eta*sqrt( (Vi(i-1)*cos(theta(i-1)-gamma(i-1)))^2 + (T_avg /(0.5* rho*pi*R^2)) );

428 Vw_top(i-1) = eta*sqrt( (Vi(i-1)*cos(theta(i-1)-gamma(i-1)))^2 + (T_top(i-1) /(0.5* rho*pi*R^2)

) );

429 Vw_bot(i-1) = eta*sqrt( (Vi(i-1)*cos(theta(i-1)-gamma(i-1)))^2 + (T_bot(i-1) /(0.5* rho*pi*R^2)

) );

430

431 % Compute true airspeed over the wings using law of cosines

432 Va(i-1) = sqrt( Vi(i-1)^2 + Vw(i-1)^2 + 2*Vi(i-1)*Vw(i-1)*cos( alpha(i-1)) );

433

434 % Use this check to avoid errors in asin

435 if Va(i-1) >= 1e-10

436 alpha_e(i-1) = asin(Vi(i-1)*sin(alpha(i-1))/Va(i-1));

437 else

438 alpha_e(i-1) = 0;

439 end

440

441 % Retrieve aero coefficients based on angle of attack

442 if aero == true

443 % [Cl , Cd , Cm] = aero_fns(c0 , c1 , c2, alpha_e(i-1));

444 % Cl = interp1(alpha_data , cl_data , alpha_e(i-1) *180/ pi);

445 % Cd = interp1(alpha_data , cd_data , alpha_e(i-1) *180/ pi);

446 % Cm = interp1(alpha_data , cm_data , alpha_e(i-1) *180/ pi);

447 Cl = ppval(cl_spline , alpha_e(i-1) *180/pi);

448 Cd = ppval(cd_spline , alpha_e(i-1) *180/pi);

449 Cm = ppval(cm_spline , alpha_e(i-1) *180/pi);

450 else

451 Cl = 0;

452 Cd = 0;

453 Cm = 0;

454 alpha_e(i-1) = alpha(i-1); % The traditional angle of attack is now true.

455 end

456

457 % Compute aero forces/moments

458 L(i-1) = 0.5* rho*Va(i-1) ^2*( chord*span)*Cl;

459 D(i-1) = 0.5* rho*Va(i-1) ^2*( chord*span)*Cd;

460 M_air(i-1) = 0.5* rho*Va(i-1) ^2*( chord*span)*chord*Cm;

461

462

463 % Controller

464 [T_top(i), T_bot(i), Fdes(:,i)] = qbit_controller(current_state , ...

465 desired_state (:,i), L(i-1), D(i-1), M_air(i-1), alpha_e(i-1), m, ...

466 Ixx , l);

467

468 if integrate_method == "euler"

469 %%%%%%%%%% Euler Integration

470 ydotdot(i) = ((T_top(i) + T_bot(i))*cos(theta(i-1)) - D(i-1)*cos(theta(i-1) - alpha_e(i

-1)) - L(i-1)*sin(theta(i-1) - alpha_e(i-1)))/m;

471 zdotdot(i) = ( -m*g + (T_top(i) + T_bot(i))*sin(theta(i-1)) - D(i-1)*sin(theta(i-1) -

alpha_e(i-1)) + L(i-1)*cos(theta(i-1) - alpha_e(i-1)))/m;

472 thetadotdot(i) = (M_air(i-1) + l*( T_bot(i) - T_top(i)))/Ixx;

473

474 % Euler integration

475 ydot(i) = ydot(i-1) + ydotdot(i)*dt;

476 zdot(i) = zdot(i-1) + zdotdot(i)*dt;

477 thetadot(i) = thetadot(i-1) + thetadotdot(i)*dt;

478

479 y(i) = y(i-1) + ydot(i)*dt;

480 z(i) = z(i-1) + zdot(i)*dt;

481 theta(i) = theta(i-1) + thetadot(i)*dt;

482

483 elseif integrate_method == "rk4"
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484 %%%%%%%%%%% 4th -Order Runge Kutta:

485 state = [y(i-1);z(i-1);theta(i-1);ydot(i-1);zdot(i-1);thetadot(i-1)];

486 k1 = dynamics(state , m, g, Ixx , l, T_top(i), T_bot(i), L(i-1), D(i-1), M_air(i-1),

alpha_e(i-1));

487 k2 = dynamics(state +(dt/2)*k1, m, g, Ixx , l, T_top(i), T_bot(i), L(i-1), D(i-1), M_air(i

-1), alpha_e(i-1));

488 k3 = dynamics(state +(dt/2)*k2, m, g, Ixx , l, T_top(i), T_bot(i), L(i-1), D(i-1), M_air(i

-1), alpha_e(i-1));

489 k4 = dynamics(state +(dt)*k3 , m, g, Ixx , l, T_top(i), T_bot(i), L(i-1), D(i-1), M_air(i-1)

, alpha_e(i-1));

490

491 new_state = state + (dt/6)*(k1 + 2*k2 + 2*k3 + k4);

492 y(i) = new_state (1);

493 z(i) = new_state (2);

494 theta(i) = new_state (3);

495 ydot(i) = new_state (4);

496 zdot(i) = new_state (5);

497 thetadot(i) = new_state (6);

498

499 ydotdot(i) = k1(4);

500 zdotdot(i) = k1(5);

501 thetadotdot(i) = k1(6);

502 else

503 errordlg("Incorrect integration scheme")

504 end

505 end

506

507 % Padding

508 L(end) = L(end -1);

509 D(end) = D(end -1);

510 M_air(end) = M_air(end -1);

511

512 Va(end) = Va(end -1);

513 Vi(end) = Vi(end -1);

514 Vw(end) = Vw(end -1);

515 Vw_top(end) = Vw_top(end -1);

516 Vw_bot(end) = Vw_bot(end -1);

517

518 alpha(end) = alpha(end -1);

519 alpha_e(end) = alpha_e(end -1);

520 gamma(end) = gamma(end -1);

521

522 T_top(end) = T_top(end -1);

523 T_bot(end) = T_bot(end -1);

524

525 Fdes(:,end) = Fdes(:,end -1);

526 Fdes (:,1) = Fdes (:,2);

527

528 alpha_e_startidx = find(alpha_e ~= 0,1,’first ’);

529 alpha_e (1:( alpha_e_startidx -1)) = alpha_e(alpha_e_startidx);

530

531 Va(1) = Va(2);

532 Vw(1) = Vw(2);

533 Vw_top (1) = Vw_top (2);

534 Vw_bot (1) = Vw_bot (2);

535 T_top (1) = T_top (2);

536 T_bot (1) = T_bot (2);

537 ydotdot (1) = ydotdot (2);

538 zdotdot (1) = zdotdot (2);

539

540 a_v_Va = (1/2)*rho*(chord*span)*Va.^2/(m*g);

541

542 %% Trim Comparison

543 % Take the data from the trim analysis for the particular flight condition

544 % we’re interested in (based on eta)

545

546 table = readtable("prop_wash_sweep.csv");

547 trim_eta = table.eta;

548 trim_alpha_e = table.alpha_e(trim_eta == eta);

549 trim_theta = table.theta(trim_eta == eta);

550 trim_alpha = table.alpha(trim_eta == eta);
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551 trim_Vi = table.V_i(trim_eta == eta);

552 trim_a_v_Va = table.a_v_Va(trim_eta == eta);

553 trim_Cl = table.Cl(trim_eta == eta);

554 trim_Cd = table.Cd(trim_eta == eta);

555

556 if traj_type == "increasing" || traj_type == "decreasing"

557 % Apply the acceleration shift based on derivation of a_v relationship

558 % with alpha.

559 if traj_type == "decreasing"

560 a_s = -a_s;

561 end

562 trim_a_v_Va_shift = trim_a_v_Va - (a_s/g)./( trim_Cd + trim_Cl .*cot(trim_alpha_e*pi /180));

563 end

564

565 %% Plotting

566 qbit_main_plotting ()

567

568 %% Dynamics Function

569 function xdot = dynamics(x, m, g, Ixx , l, T_top , T_bot , L, D, M_air , alpha_e)

570 % INPUTS

571 % t - current time (time(i))

572 % x - current state , x = [6x1] = [y, z, theta , ydot , zdot , thetadot]

573 % m, g, Ixx , l - physical parameters of mass , gravity , inertia , prop arm

574 % length

575 % T_top , T_bot - motor thrust inputs

576 % L, D, M_air - aero forces and moments , computed prior

577 % alpha_e - effective AoA on the wing

578

579 xdot = zeros(size(x));

580

581 xdot (1) = x(4);

582 xdot (2) = x(5);

583 xdot (3) = x(6);

584 xdot (4) = (( T_top + T_bot)*cos(x(3)) - D*cos(x(3) - alpha_e) - L*sin(x(3) - alpha_e))/m;

585 xdot (5) = ( -m*g + (T_top + T_bot)*sin(x(3)) - D*sin(x(3) - alpha_e) + L*cos(x(3) - alpha_e))/m;

586 xdot (6) = (M_air + l*(T_bot - T_top))/Ixx;

587

588 end

Listing 2: This function houses the controller described in section 2.5.

1 %%% This function will output thrust commands based on a nonlinear

2 %%% geometric controller that tracks orientation [theta] and position [x,z].

3 %%% Spencer Folk 2020

4 function [T_top , T_bot , Fdes] = qbit_controller(current_state , desired_state , L, D, M_air ,

alpha_e , m, Ixx , l)

5

6 % INPUTS -

7 % current_state = [x z theta xdot zdot thetadot]’

8 % current_time - current time step (time(i))

9 % L - current lift force

10 % D - current drag force

11 % M_air - current pitch moment

12 % alpha_e - current effective angle of attack

13 % m - vehicle mass

14 % Ixx - vehicle inertia about x axis

15 % l - distance between each rotor

16

17 %% Gains and constants

18 K_p = [5.8*2 , 0 ; 0 , 5.8*3];

19 % K_d = [8.41*2 , 0 ; 0 , 8.41*3];

20 K_d = 2*sqrt(K_p(1,1))*eye(2);

21

22 K_R = 373.6489/10;

23 % K_w = 19.333;

24 K_w = 2*sqrt(K_R);

25

26 g = 9.81;

27 max_motor_thrust = 0.30*9.81*2; % N, determined by estimating max thrust of a single motor and

multiplying by 2

28
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29 % Booleans -- for clarity , true nominally means it will be allowed or enabled.

30 aero = true; % This bool determines whether or not the controller is aware of aerodynamic

forces

31 neg_thrust_bool = true; % Boolean for allowing negative thrusts by the motor (unrealistic , but

for debugging purposes)

32 motor_sat_bool = false; % If motor thrust goes above saturation limit , this will limit it.

33

34

35 %% Extract current and trajectory states for a given time

36 y = current_state (1);

37 z = current_state (2);

38 theta = current_state (3);

39 ydot = current_state (4);

40 zdot = current_state (5);

41 thetadot = current_state (6);

42

43 rT = desired_state; % Put function here trajectory(current_time)

44 yT = rT(1);

45 zT = rT(2);

46 ydotT = rT(3);

47 zdotT = rT(4);

48 ydotdotT = rT(5);

49 zdotdotT = rT(6);

50

51 %% Construct rotation matrices

52 iRb = [cos(theta) , -sin(theta) ; sin(theta) , cos(theta)];

53 iRe = [cos(theta - alpha_e) , -sin(theta - alpha_e) ; sin(theta - alpha_e) , cos(theta - alpha_e)

];

54

55 %% Computing u1

56

57 % Compute desired accelerations

58 rdotdot_des = [ydotdotT ; zdotdotT] - K_d*[ydot - ydotT ; zdot - zdotT] - K_p*[y - yT ; z - zT];

59

60 % Now compute Fdes

61 if aero == true

62 Fdes = m*rdotdot_des + [0 ; m*g] - iRe*[-D ; L];

63 else

64 Fdes = m*rdotdot_des + [0 ; m*g];

65 end

66

67 % From there compute u1 (magnitude)

68 b1 = iRb *[1;0];

69 u1 = b1 ’*Fdes;

70

71 %% Computing u2

72

73 % Solve for b1_des:

74 b1_des = Fdes/norm(Fdes);

75

76 % Compute error

77 % e_theta = acos(dot(b1 ,b1_des));

78 e_theta = -atan2(b1(1)*b1_des (2) - b1(2)*b1_des (1), b1(1)*b1_des (1) + b1(2)*b1_des (2));

79

80 % Compute u2:

81 u2 = Ixx*(-K_R*e_theta - K_w*thetadot) - M_air;

82

83 %% Computing actuator outputs

84 % We can readily solve for thrust by solving this system:

85 % [A]*[ T_top ; T_bot] = [u1 ; u2]

86

87 T = inv ([1 , 1 ; -l , l])*[u1 ; u2];

88

89 T_top = T(1);

90 T_bot = T(2);

91

92 % Negative thrust constraint

93 if neg_thrust_bool == false

94 if T_top < 0

95 T_top = 0;

96 end
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97 if T_bot < 0

98 T_bot = 0;

99 end

100 end

101

102 % Motor saturation constraint

103 if motor_sat_bool == true

104 if T_top >= max_motor_thrust

105 T_top = max_motor_thrust;

106 end

107 if T_bot >= max_motor_thrust

108 T_bot = max_motor_thrust;

109 end

110 end

111

112

113 end

Listing 3: The role of this function is to generate a constant-height transition with a prescribed angle of attack
versus time.

1 %%% This function designs a planar trajectory (y(t), ydot(t), yddot(t))

2 %%% For a constant height transition maneuver , based on a given time -

3 %%% valued function of alpha_e.

4 %%% Spencer Folk 2020

5 function [y_des , ydot_des , ydotdot_des ]= prescribed_aoa_traj_generator(dt,time ,alpha_e_des ,

cl_spline , cd_spline ,rho ,m,g,chord ,span ,accel_bool)

6 % INPUTS

7 % dt - sampling rate

8 % time - time vector corresponding to alpha_e_des

9 % alpha_e_des - alpha_e (in rad) corresponding to the i’th simulation step

10 % rho - air density [kg/m^3]

11 % m - vehicle mass [kg]

12 % g - gravity [m/s^2]

13 % chord - wing chord [m]

14 % span - wing span [m]

15 % R - rotor radius [m]

16 % accel_bool - boolean to determine whether or not we consider the

17 % acceleration

18

19 y_des = zeros(1,length(alpha_e_des));

20 ydot_des = zeros(1,length(alpha_e_des));

21 ydotdot_des = zeros(1,length(alpha_e_des));

22

23 % Get Cl, Cd for the desired alpha_e

24 cl = ppval(cl_spline ,alpha_e_des *180/ pi);

25 cd = ppval(cd_spline ,alpha_e_des *180/ pi);

26

27

28 if accel_bool == 0

29 %%%%%%%%%%%%%%%%% ANALYTICAL WITH NO ACCELERATION %%%%%%%%%%%%%%%%%%%%%%%%%

30 % Compute V_i(t) from desired

31 V_i = sqrt ((2*m*g*cot(alpha_e_des)./(rho*chord*span*(cd + cl.*cot(alpha_e_des)))));

32

33 % From V_i we can assign our values for the trajectory:

34 ydot_des = V_i;

35 ydotdot_des_temp = diff(V_i)/dt;

36 ydotdot_des = [ydotdot_des_temp , ydotdot_des_temp(end)];

37

38 for i = 2: length(alpha_e_des)

39 y_des(i) = y_des(i-1) + V_i(i)*dt;

40 end

41

42 elseif accel_bool == 1

43 %%%%%%%%%%%%%%%%% APPROXIMATE SOLN WITH ACCELERATION %%%%%%%%%%%%%%%%%%%%%%

44 V_i = zeros(size(time));

45

46 for i = 2: length(time)

47 V_idot = g*cot(alpha_e_des(i)) - ((0.5* rho*chord*span*(cl(i)*cos(alpha_e_des(i)) + cd(i)*

sin(alpha_e_des(i))))/...

48 (m*sin(alpha_e_des(i))))*V_i(i-1) ^2;
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49 V_i(i) = V_i(i-1) + V_idot*dt;

50

51 ydotdot_des(i) = V_idot;

52 ydot_des(i) = V_i(i);

53 y_des(i) = y_des(i-1) + V_i(i)*dt;

54 end

55 end

56

57 end
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